

Evaluating Random Errors of Atmospheric Observations, Model Forecasts, and Reanalyses Using the Three-Cornered Hat Method

Therese Rieckh, Jeremiah Sjoberg, Richard A. Anthes

COSMIC Program Office, UCAR

IROWG-8, April 8, 2021

Three-cornered hat method key points

- Requires three data sets and provides **error variance estimates of random errors**
- Removes the impact of biases, but includes all other sources of errors: instrument, processing, co-location, representativeness,..
- Exact...unless the errors of the data sets are correlated due to:
 - 1) actual error correlations
 - 2) representativeness differences (can be large)
 - 3) errors introduced by the co-location process
 - 4) correlations arising by chance in small sample sizes (negligible in results shown here)

Three-cornered hat method key points (2)

- Note: representativeness differences impact all metrics comparing two or more data sets
- Advantage of 3CH: we derive error variances estimates for many data sets at once, and different data set combinations allow conclusions on data set relationships
- N data sets give $(N-1)(N-2)/2$ estimates per data set

Sjoberg et al (2021): The three-cornered hat method for estimating error variances of three or more atmospheric data sets – Part 1: Overview and evaluation. *J. Atmos. Oceanic Technol.*, 38, 10.1175/JTECH-D-19-0217.1

Rieckh et al (2021): The three-cornered hat method for estimating error variances of three or more atmospheric data sets – Part 2: Evaluating radio occultation and radiosonde observations, global model forecasts, and reanalyses. *J. Atmos. Oceanic Technol.*, in review.

Data set overview

Oct–Nov 2006:

COSMIC (C1) } *Observations*
ERA5
ERA-Interim
MERRA
MERRA-2
JRA-55
JRA-55C
ERA-20C } *Reanalyses with
conventional obs./
surface obs. assimilated*
20CR

Oct–Nov 2019:

COSMIC-2 (C2)
Radiosonde (RS)
ERA5
GFS
CFSRv2
MERRA-2
JRA-55

Normalization:
mean ERA5
Variable: refractivity
**error standard
deviations (%)**

Results: refractivity 2006

C1

$(N-1)(N-2)/2$ estimates

ERA5 and C1
combinations:

- Actual error correlations
- Representativeness

Note: latitudinal sampling adjustment

Note that the 28 estimates would be **identical** if the **footprints of the 9 data sets were the same** and **there were no error correlations** among any of the 9 data sets

Results: refractivity 2006 vs 2019

C1 and C2 ($N-1(N-2)/2$ estimates)

ERA5 and C1
combinations:

- Actual error correlations
- Representativeness

ERA5 and C2
combinations:

- Representativeness

Note: latitudinal sampling adjustment

Results: refractivity 2006 vs 2019

Mean of estimates

- C2 slightly larger in lower and mid troposphere
- C2 slightly larger above 15km

→ Smaller error correlation of C2 with other data sets

→ Increased moisture in 2019

Note: latitudinal sampling adjustment

Results: refractivity, radiosonde

Mean and Stddev of estimates

- At RS locations only
- RS estimates much larger than those of other data sets
- RS estimates larger than RS intrinsic error
- Due to very different horizontal and vertical footprints (representativeness) compared to all other data sets

Results: land vs. sea

C2-global
COSMIC-2
ERA5
GFS
MERRA-2
JRA-55

Results: rising vs. setting occultations

C2-global
COSMIC-2
ERA5
MERRA-2

Results: rising vs. setting occultations

C2-global
COSMIC-2
ERA5
MERRA-2

Summary

- Using many data sets in the 3CH method helps to identify error correlations from various sources
- Representativeness differences, caused by differences in vertical and horizontal footprints of data sets, must be taken into account when interpreting the 3CH estimates
- Error estimates of radiosondes are very large due to representativeness differences
- Error estimates vary strongly with latitude and atmospheric conditions
- COSMIC and COSMIC-2 error estimates are comparable to those of state-of-the-art reanalyses