Vertical Structure Content of Polarimetric Radio Occultations (PRO) and Applications to Weather Modeling

F. Joseph Turk¹, Ramon Padulles², Estel Cardellach², Chi O. Ao¹, Manuel de la Torre-Juarez¹, Kuo-Nung Wang¹, Mayra Oyola¹, J. David Neelin³, Hui Shao⁴, Benjamin Johnson⁴

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA ²ICE-CSIC/IEEC, Barcelona Spain ³Dept. of Atmos. & Ocean. Sci., Univ. of California, Los Angeles CA ⁴UCAR/JCSDA, College Park MD

Jet Propulsion Laboratory California Institute of Technology

8th International Radio Occultations Working Group Workshop (IROWG-8) April 7-9, 11-13, 2021

UCLA

https://paz.ice.csic.es

Precipitation Climatology

Geographical distribution of the upper percentile (top 2%) of the measured polarimetric phase shift ($\Delta \phi$) from all ROHP observations

Each dot color denotes a vertical region where the $\Delta \phi$ from all rays were averaged

The color contour background is GPM-IMERG averaged over the same 3-month period

Geographical agreement with known global precipitation patterns

 $\Delta \phi$ adds an indication of vertical precipitation structure to the (*T*, *q*, *p*) profile

Purpose of this investigation is to characterize the $\Delta \phi$ profile, to facilitate its science usage

Relating Polarimetric Phase Difference to Precipitation Structure

Polarimetric differential phase shift $\Delta \phi$ due to rain is a path-weighted sum =

0.35(25) + 0.1(25) + 0.8(25) + 0.05(25) = 14.5 deg = 5 mm

This value would clearly indicate the presence of / heavy precipitation somewhere along the ray path

1.6 2 mm/h 10 mm/hr 1.4 25 mm/hr 50 mm/hr Phase (deg/km) 8.0 8.0 10.6 Propagation I 7.0 S-band L5 -0.2 0.1 10 Frequency (GHz)

However, different combinations of path lengths and rain intensities yield a similar phase difference

Long Heritage in Polarimetric Doppler Radar Community

Assessing ROHP with Current GPM MW Radiometer Constellation

ROHP Cal/Val has been done to date separating data by "near-surface" precipitation from GPM-IMERG data (*Padulles et al*, 2020)

The polarimetric signal responds to the precipitation vertical structure along each ray path. Further assessment requires an observational dataset that has 3-D condensed water content structure

Very few coincidences and ray-alignments within narrow swath GPM dual-frequency radar (DPR, 240-km Ku-band swath; 240-km Ka-band after May 2019) to compare with $\Delta \phi$ profile

Use wide-swath GPM passive MW radiometer constellation (GPM/GMI, GCOM-W/AMSR-2, NPP/NOAA-20 ATMS, MetOp/MHS, DMSP/SSMIS, etc.)

Vertical profiles of the condensed water content provided by the Emissivity Principal Components (EPC) passive MW precipitation profiling algorithm, whose *a-priori* data comes from the DPR (*Utsumi et al* 2020, *Turk et al* 2018)

+/-15 min coincidences ROHP/GPM constellation passive MW Run EPC for passive MW scans covering all RO rays from 20-km to surface

Ray-tracing along same 0.1-km level rays for ROHP Propagate each ray through the 3-D cloud. Accumulate rain and ice water path Simulate $\Delta \phi$ profile using rain and a few simple ice shape assumptions

Latest ROHP APC 20200513 reprocessing

Lookup tables of K_{DP} for rain (Beard et al axis ratio) and ice (several axis ratios) using T-matrix

About 8000 ROHP cases

Exaggerated 3-D water content structure

ROHP 2019/04/150544 UTCDMSP F-18SSMIS0556 UTC

RO tangent points locations and ray paths

ROHP 2019/04/150544 UTCDMSP F-18 SSMIS0556 UTC

Water Path Profile

(sum along each ray)

Detection Characteristics: Total Rain+Ice Water Path

 $\Delta \phi$ "operating point" (balance of POD and FAR)

Better detection of total water path > freezing level

Scattering of particles – Simple prolate spheroids

Fixed axis ratio (0.8, 0.5, 0.2) for solid ice

See Padullés et al IEEE-TGRS 2021 (also next talk right after this one)

Hydrometeor Asymmetry Characteristics

Normalized Histograms ROHP Rays: All Rays Total Rain+Ice Water Path

Normalized Histograms ROHP Rays: Above Freezing Level Total Rain+Ice Water Path

Hydrometeor Asymmetry Characteristics

Normalized Histograms ROHP Rays: T=253K Level and Above Total Rain+Ice Water Path Normalized Histograms ROHP Rays: Nearly All Rain Total Rain+Ice Water Path

Relation to Humidity Structure

Separated by Height of Top-Most Temperature Level where Path > 1 kg m⁻²

Separated by Height of Top-Most Temperature Level where $\Delta \phi$ > 3-mm

Summary

A poor man's simple forward operator was developed using passive MW profile retrievals and a ray tracing model, to compare a large number of simulated and observed $\Delta \phi$ profiles

Even with perfect knowledge of the microphysics, cloud geometry relative to each ray is important to interpret (and simulate) the $\Delta \phi$ profile - challenging to accurately forward model

Therefore, the relation between $\Delta \phi$ and the total condensed water path was performed on a collective basis using detection statistics. FAR < 0.2 for total water path > 20 kg m⁻², esp. for rays that don't fall below the freezing level height

Overall "qualitative agreement" with range of axis ratio of precipitation-sized ice phase hydrometeors noted by others (eg Matrosov et al 2005), and "rain-only" rays

Using $\Delta \phi$ as a proxy for convection, sensitivity of precip to vertically-resolved moisture?

PAZ data are openly available, investigations and collaborations welcomed

https://paz.ice.csic.es

Recent Publications

Padullés, R., Cardellach, E., Turk, F.J., Ao, C.O., Juárez, M. de la T., Gong, J., Wu, D.L., 2021. Sensing Horizontally Oriented Frozen Particles With Polarimetric Radio Occultations Aboard PAZ: Validation Using GMI Coincident Observations and Cloudsat a Priori Information. *IEEE Transactions on Geoscience and Remote Sensing*, accepted. <u>https://doi.org/10.1109/TGRS.2021.3065119</u>

Utsumi, N., Turk, F.J., Haddad, Z.S., Kirstetter, P.-E., Kim, H., 2020. Evaluation of precipitation vertical profiles estimated by GPM-era satellite-based passive microwave retrievals. *J. Hydrometeor*, 22, 95-112. <u>https://doi.org/10.1175/JHM-D-20-0160.1</u>

Gong, J., Zeng, X., Wu, D.L., Munchak, S.J., Li, X., Kneifel, S., Ori, D., Liao, L., Barahona, D., 2020. Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations. *Atmospheric Chemistry and Physics* 20, 12633–12653. <u>https://doi.org/10.5194/acp-20-12633-2020</u>

Padullés, R., C.O. Ao, F.J. Turk, and M. de la Torre-Juárez, B.A. lijima, K.N. Wang, E. Cardellach, 2019. Calibration and Validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment Aboard the PAZ Satellite. *Atmos. Meas. Techniques*, <u>https://doi.org/10.5194/amt-2019-237</u>

Cardellach, E., S. Oliveras, A. Rius, S. Tomás, C.O. Ao., G.W. Franklin, B.A. Iijima, D. Kuang, T. Meehan, R. Padullés, F.J. Turk, et al., 2019. Sensing Heavy Precipitation with GNSS Polarimetric Radio Occultations. *Geophysical Research Letters*, *46*, 1024–1031. <u>https://doi.org/10.1029/2018GL080412</u>

Turk, F.J.; Padullés, R.; Ao, C.O.; Juárez, M.T.; Wang, K.-N.; Franklin, G.W.; Lowe, S.T.; Hristova-Veleva, S.M.; Fetzer, E.J.; Cardellach, E.; Kuo, Y.-H.; Neelin, J.D., 2019. Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements. *Remote Sens.*, *11*, 2399. <u>https://doi.org/10.3390/rs11202399</u>

Padullés, R., Cardellach, E., Wang, K. N., Ao, C. O., Turk, F. J., and de la Torre-Juárez, M., 2018. Assessment of GNSS radio occultation refractivity under heavy precipitation, *Atmospheric Chemistry* and *Physics*, <u>https://doi.org/10.5194/acp-2018-66</u>.

Juárez, M. de la T., R. Padullés, F.J. Turk, and E. Cardellach, 2018: Signatures of Heavy Precipitation on the Thermodynamics of Clouds Seen From Satellite: Changes Observed in Temperature Lapse Rates and Missed by Weather Analyses. J. Geophys. Res: Atmospheres, 123, 13033-13045. <u>https://doi.org/10.1029/2017JD028170</u>

Tomás, S., Padullés, R. & Cardellach, E., 2018. Separability of Systematic Effects in Polarimetric GNSS Radio Occultations for Precipitation Sensing. *IEEE Transactions on Geoscience and Remote Sensing* **56**, 4633–4649. <u>https://doi.org/10.1109/TGRS.2018.2831600</u>

Cardellach, E., Padullés, R., Tomás, S, Turk, F. J., Ao, C. O., and de la Torre-Juárez, M., 2017. Probability of intense precipitation from polarimetric GNSS radio occultation observations, *Q. J. Royal Meteorological Soc*iety, 12. <u>https://doi.org/10.1002/qj.3161</u>

Padullés, R. Cardellach, E. de la Torre Juárez, M., Tomas, S., Turk, F. J., Oliveras, S., Ao, C. O. and Rius, A., 2016. Atmospheric polarimetric effects on GNSS Radio Occultations: the ROHP-PAZ field campaign, *Atmospheric Chemistry and Physics*, 16, 635-649, <u>https://doi.org/10.5194/acp-16-635-2016</u>.

Cardellach, E., Tomás, S., Oliveras, S., Padullés, R., Rius, A., De la Torre-Juárez, M., Turk, F.J., Ao, C.O., Kursinski, E.R., Schreiner, B., Ector, D. and Cucurull, L., 2014. Sensitivity of PAZ LEO Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events, *IEEE Trans. Geoscience and Remote Sens.*, 53,190-206, <u>http://doi.org/10.1109/TGRS.2014.2320309</u>