Background

d It is well known that ionosphere has significantly influences radio propagation to distant places
on the Earth

d In order to monitor and understand the physics that control the dynamics of the ionosphere, a
number of global and regional ionospheric model and data mapping product have been
developed over the last several decades.

d The models and data mapping products can provide information regarding change in the
ionosphere on a daily basis, hourly basis, or near real time.

d The most ionospheric map are based on total electron content (TEC). The TEC data map are
developed based on observations from hundreds of Global Navigation Satellite System (GNSS)
receivers.

H The magnitude of TEC varies from a few total electron content unit, 1 TECU = 10%® el m~2 (TECU)
near the magnetic equator to 20-50 TECU at the crest region depending on the day and season
[Bagiya et al ., 2009].

H TEC observations from ground-based GPS/ GNSS receivers are often uneven in distributions and
concentrated over specific areas because of limited numbers of satellites and stations.

d An interpolation methods have an important role to play in develop ionospheric data mapping
product, even on a regional scale.

d Previously reported interpolation technique for TEC-mapping studies include kriging, cubic B-
spline and multiquadric (Stanislawska et al 2002., Wielgosz et al 2003., Orus et al 2005.,
Grynyshyna-Poliuga et al 2014), as well as moving average covered area (Takahashi et al., 2016).
Other technique based on least squares collocation (Krypiak-Gregorczyk et al.,, 2017) and
Spherical cap harmonic (Liu et al 2010) have also been reported.

d In this paper, an ionospheric TEC mapping product (GoTEC-LAPAN) is developed based on multi-
GNSS (GPS and GLONASS) observations for the Indonesian region. Method and performance of
the ionospheric TEC mapping are carefully analyzed and validated using single station
observation data and global model. The TEC data mapping product will be provided in a standard
IONEX format so that it can be used for GNSS position correction application purpose.

Objectives

v To developed ionospheric TEC mapping product (GoTEC-LAPAN) based on multi-GNSS
(GPS and GLONASS) observations for the Indonesian region

v’ To validated by using single station observation data and global model. The TEC data
mapping product will be provided in a standard IONEX format so that it can be used
for GNSS position correction application purpose

Results and Discussion

To test and validation our method, IGS global ionospheric model (GIM), IRI2016 and single-station observation data
during a geomagnetic storm event were used to evaluate the TEC map model. The solar storm happened on April 20,
Figure 4 shows the variations of the geomagnetic parameters, (Bz, Kp and Dst) from April 19 to 21, 2020. These indices
can be obtained from NASA’s OMNI website (https://omniweb.gsfc.nasa.gov/form/dx1.html). The situation shown in
figure 4 indicates that the North South component of interplanetary magnetic field (IMF-Bz) jumped to -14nT, Kp 5 and
Dst index reached about -60 nT, (started at 06:00 UT), which was categorized as minor G1 geomagnetic storm conditions.

20 T T

ok A9Apdl 20l o2 Al

Hour Number (L) a) (b) (C)

Figure 5. Three day of the global TEC values for Asia region obtained from GIMs produced by the

Figure 4. Interplanetary and geomagnetic indexes from April 19 to 21, 2020 (a) The interplanetary
IGS a) 19 April, b) 20 April, G1 geomagnetic storm day and ¢) 21 April 2020

magnetic field BZ component (nl), (b) Kp index, (c) Dst index (nl)

The results in Figure 6 show three days of temporal variations of TEC
for model and observations. These include GIM-IGS TEC (black dash
line), Gopi-GPSTEC at BAKO (blue line), IRI2016 (thin black dash line)
and GOTEC-LAPAN (red line). We can see that the global TEC model,
(IR1I2016 and GIM-IGS TEC) are lower than regional model (GoTEC-

LAPAN) and single-station observation data (Gopi-GPSTEC at BAKO).
Geomagnetcstorm on et 20,2 compartson o Tec messurement st amiss e The TEC values from GOTEC-LAPAN and Gopi-GPSTEC at BAKO have

(black dash line), GOPI-GPSTEC (blue line), IRI2016 (thin black dash line) and GoTEC-

LAPAN (red line) have a similar pattern.

.Apparently, the minor geomagnetic storm did not significantly affect the expected regular TEC variation. This might be
because both set of measurements ware taken in the southern crest region (SCR), while the effect of TEC asymmetries
during this geomantic storm primarily affected the northern crest region (NCR) as shown in Figure 5.

TEC map GIM igsg 20April 02:00 UT TEC map GoTEC-LAPAN 20 April 2020 01:30UT IRI TEC map 20 April 2020 01:30 UT

Latiuge
Latitude
Longitude

___________________________

1 g 44 L P

_______________________________

100°E 105°E 110°E 100%E 105
Longitude Longitude

(b) (<)

Figure 7. Global TEC (GIM) igs (a), regional TEC GoTEC-LAPAN (b) and IRI2016 TEC model (c)
during G1 minor geomagnetic storm on April 20, 2020 by using 10 stations
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In the first stage of GOTEC-LAPAN model development, the first 9 GNSS station from INACORS BIG listed in table 1 and
indicated as blue triangle in Figure 2, used for developed TEC map of GoTEC-LAPAN model which is covered latitude
between 10° North to 10° South and Longitude form 85° to 120°. The TEC map is ( marked as blue triangles in Figure
2) were used to developed the TEC map, which covered latitude range between 10°N and 10°S and longitude range
from 85°E and 120°E. The TEC map covered the area of Sumatra, Peninsular Malaysia, Java and West Kalimantan.
Figure 7 shows a comparison of the global TEC (GIM) IGS (Figure 7(a), TEC IRI2016-TEC (Figure 7(c) model and GoTEC-
LAPAN (Figure 7 (b) at 01:30 April 20, 2020. In Figure 7, IGS-GIM TEC and GoTEC-LAPAN model show similar spatial
pattern of TEC variation and absolute TEC level, but IRI2016 TEC values were somewhat lower and exhibit different
spatial variation. This different is likely due to the use of satellite bias in the TEC estimation method of TEC GIM and
GOTEC-LAPAN.
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Figure 8. Three ionospheric TEC map model, Global TEC (GIM) igs, regional TEC of
GoTEC-LAPAN and IRI2016 TEC model on September 2, 2020 by using 60 stations. a),b) and c) at
00:00UT, d), e)andf) at08:00UT respectively.

Data and Method
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Figure 2 : Geographical map marking the locations of
ground-baed GNSS receiver stations from the INACORS BIG
network that listed in table 1

Table 1. Geographic coordinate ground GNSS network station IIN A«
in this study

Figure 1 : Indonesian Continuously Operating

Reference Station by Badan Informasi Geospasial (BIG):
http://nrtk.big.go.id/sbc/

In the first step, we subtract 1, P2,Li1, Lz and ECEF location antenna data from RTCM
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carrier phase measurements STECae (Liu 2004) as following formula: 1 CSABR = 803 o5 316
o F2[(P, — P2) — b, — B, _ 2 CBDA 5.296 95.609
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The third step is convert slant TEC (STEC,,,) into vertical TEC (VTEC). 40 CTBL 1.73 128.008
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Regional TEC map Final The VTEC obtained by multiplying the STEC with the mapping

function M(z), which, is defined as: 42 CPDG -0.954 100.363
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M = order of polynomial functions for TEC variations with respect to longitude =1

Generally, we had developed simple low order polynomial model for TEC mapping over Indonesian sector. Earlier results from stage 1
GOTEC-LAPAN (using 10 GNSS INACORS station, covered latitude range between 10°N and 10°S and longitude range from 85°E and 120°E
as shown in Figure 7) showed quite good agreemment IGS-GIM and IRI12016. However, when GoTEC-LAPAN is further expanded by using
60 GNSS station from INACORS (covered latitude range of 10° N to -15°S and longitude range of 85°E to 150°E) ), the model results
became quite different on spatial patern, especially during day time. Obviously IGS-GIM showed two maximum peak of TEC as a
representation of equatorial anomaly (EIA) but GoTEC-LAPAN showed only one peak. The Mean Absolute Percentage Error (MAPE) of
GOoTEC-LAPAN model respect to IGS-GIM TEC about 14.62 %, and IRI2016 about 32.01%. The IGS-GIM TEC is support by world-wide
network of IGS stations, the grids having IGS stations inside would give better accuracy than the grids without any IGS stations. Recently,
there are about 5 sites of IGS station in the regional Indonesia, incluing of NTUS Singapore, that makes it even more accurate. However,
IGS-GIM has a temporal resolution of two hours and a spatial resolution 2.5° and 5° so it is problem in practical purposes that requiring a
resolution of less than two hours. GOoTEC-LAPAN is developed by quite simple method of first order polynomial for build regional TEC
map. Considering algorithm runtime, the method was choosen to provide near real time of TEC map with temporal resolution 5 minutes
and spatial resolution 1°x 1°. However, the next step for the effectiveness of the methods already used, the IONEX format as output of
GOTEC-LAPAN need to be testing of accuracy for practical purposes as ionospheric correction model

Conclusion

The regional ionospheric model from the INACORS BIG GNSS network over Indonesia has been developed. The Networked Transport of
RTCM via Internet Protocol (NTRIP) used to retrieved RCTM data. TEC values derived from carrier phase measurements and we use
satellite and receiver bias from IGS-GIM IONEX data. In the first stage we use 9 sites from INACORS then continued add to be 60 sites in
the stage two. Result showed when using 9 site of GNSS INACORS, the IGS-GIM TEC and GoTEC-LAPAN model somewhat the same spatial
pattern of TEC variation in the west region Indonesia and agree with TEC value, but IRI2016 TEC values lowest and showing slightly
different spatial pattern of TEC variation. This different is due to the use of satellite bias in the TEC estimation method of TEC GIM and
GOTEC-LAPAN. In the stage two, model is expanded by using 60 stations of GNSS INACORS, the TEC variation between GoTEC-LAPAN and
IGS-GIM TEC quite same spatial patern compared to IRI2016 at 00:00 UT (07:00 LT). However, the model showing quite different of
spatial patern at 08:00 UT (15:00 LT). IGS-GIM TEC showing two highest TEC peak (representation of EIA) compare to GoTEC-LAPAN
which is only showing one highest TEC peak. The Mean Absolute Percentage Error (MAPE) of GOTEC-LAPAN model respect to IGS-GIM
TEC about 14.62 %, and IRI2016 about 32.01%.
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