Polarimeter to Unify the Corona and Heliosphere

Student Thermal Energetic Activity Module (STEAM)

Gabriela Galarraga Sarah Bordiuk Samantha Honan Owen Ahlers Alvin Angeles Anne O'Connor Cassidy Bliss

Amir Caspi Victor Andersen Craig DeForest

STEAM Science August 10th, 2021

Introduction

Science Objectives

Explore the enhancement of low First lonization Potential (FIP) elements in the solar corona. Explore how solar coronal plasmas are heated in flares and quiescent active regions.

Support PUNCH science in understanding the source regions of solar wind and coronal mass ejections. Magnetic Reconnection & Plasma Heating

Oppositely oriented field lines cancel

Field lines rearrange themselves into a lower energy state

Releases an explosion of energy

Releases heat and energy into the corona

Low FIP Elements in Corona

Low FIP (< 10 eV) elemental abundances point to origin of plasma

- Prominent above thermal continuum
- Abundances enhanced by a factor of ~4 in corona over chromospheric values
- Abundances allow STEAM to infer origin of plasma for flares and active regions (AR)

Why X-rays?

DUDGH

• STEAM will observe similar low-FIP spectral lines as MinXSS-1 but with greater resolution, energy coverage, and temporal coverage

How are we going to measure X-rays?

- Detector will measure individual incident photons and their energies
- Photons are assigned into appropriate bins based on their energies.
- Each integration period provides a histogram spectrum of detected photons

 \rightarrow Can be summed to improve statistics

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

Flare observed by MinXSS

PUDCH

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

What is STEAM?

DIDGH

	SXR	HXR
Energy Range	1 to 7 keV	7 to 20 keV
Resolution	< 0.3 keV	< 1 keV
Field of View	5.25° to 10°	5.25° to 10°

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

CAD model of STEAM instrument and its dimensions

What is STEAM?

STEAM as it would fit in the PUNCH NFI satellite

DGH

Prototype build of STEAM

Spectrometer Calibration

Below is a schematic of an emission line we would use to calibrate the energy scale of our detectors

On-ground calibration with

X-ray emissions of

radioactive

isotopes

Achieving Science Goals

DUIDGH

Observables	Applying the Physics	Modeling
	Define continuum and spectral line emissions	Continuum shape & line intensities
X-ray photons from source		Forward Modeling
	Fit temperatures and abundances	
V	SXR (bound-bound radiation)	Use Bremsstrahlung and atomic emission databases
Respective energies	Majority of line emissions	•
	HXR (free-free and free-bound radiation) Helps to constrain continuum shape	Chi-squared minimization to derive physical parameters

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

Expected Data & Analysis/Modeling

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

PUDGH

Addressing Cosmic X-ray Background

Soft X-Ray

• CXB is not a significant source of uncertainty

FOV= 10 degrees

• CXB < 1% Solar Flux

SXR: M1 flare, B1 Active Region, & Background

Hard X-Ray

- Flares produce significant counts
- HXR active region counts are insignificant

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

Tentative Data Pipeline

PUDA

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

Connections to PUNCH

CONNECTION BETWEEN CORONA AND INNER HELIOSPHERE

ENERGY RELEASE PROCESSES INTO CORONA

ORIGIN OF HEATED PLASMA

TEMPERATURE OF LOW FIP ELEMENTS

> SOLAR FLARES & ACTIVE REGIONS

STEAM: Gabriela, Samantha, Sarah, Anne, Alvin, Cassidy, Owen

Current Work and Future Outlook

Current Work:

We are currently in Phase C of development

- PDR (Preliminary Design Review) passed! Spectrometer testing and calibration using radioactive isotopes
 - working towards obtaining Fe 55, Am 241, Ba 133, Zn65, & Cd109

Future Outlook:

- Create Engineering Model (EM)
- Instrument Critical Design Review ~ October 2021