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https://cpaess.ucar.edu/meetings/2021-punch-2-abstracts/optical-flow-technique-aurora-solar-wind

Optical Flow (OF) Technique

e Optical flow used here (also called gradient or differential method) is the representation
of the apparent two-dimensional motion of an “object”

* We calculate the motion between two image frames
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OF technique applications on CMEs

[Colaninno and Vourlidas, 2006]

LASCO CME observation

Optical flow vectors (arrows)
and magnitude (gray scale)

Colaninno and
Vourlidas (2006)
Calculated the
motion of a CME
observed by LASCO
using the optical
flow method



OF technique applications on CMEs

Optical flow vectors (arrows)

LASCO CME observation and magnitude (gray scale) * Colaninno and

Vourlidas (2006)
Calculated the
motion of a CME
observed by LASCO
using the optical
flow method

This methodology
was validated by
using a synthetic
CME

Colaninno and Vourlidas, 2006]
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OF technique applications to STEREO data

Radial component

COR1 Attempt

Azimuthal component
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OF technique applications to STEREO
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OF technique applications to STEREO — Radial component

Radius (Apparent Solar Radii)

(b)

Arbitrary units

Arbitrary units

Data courtesy of Craig DeForest
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OF technique applications to STEREO — Azimuthal component

Radius (Apparent Solar Radii)

(b)

Data courtesy of Craig DeForest
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Plasma motion in the near-Earth space environment

This work is motivated by Magnetosphere-ionosphere plasma convection/convection patterns
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The motion of auroral structures

(b) Patch#3 ASI Image & SD VLOS

SD velocity

[Yang et al., 2015]
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Ine Motion OT auroral structures

(b) Patch#3 ASI Image & SD VLOS 7

In the aurora,
some of the
) structures move
e with convection
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Avallaple auroral optiCal data

White light — THEMIS AS| Redline — REGO AS|

Near Infrared and RGB — TREx

TREXx sensors will create a data cube to study the space environment and its effects on our
atmosphere and technology. / 6x Blue line imagers (1s-30Hz cadence)

6x RGB imagers (3s cadence)

Site Name

@ 6x Near-Infrared imagers (3s cadence)

1. Athabasca, AB
2. Calgary, AB

3. Fort Smith, NWT
4. Flin Flon, MB

5. Gillam, MB

10x Imaging Riometer (1s-100Hz cadence)

2x Proton Aurora Meridian Imaging
Spectrograph (30s cadence)

6. Island Lake, MB
7.La Loche, SK

8. Pinawa, MB

9. Rabbit Lake, SK

10. Russel, MB ' :
’ O :
11. Saskatoon, SK Dsery, Magnetometers, etc.)

Derived Quantities (precipitating electron and

13x Global Navigation Satellite
System Receiver

Existing Infrastructure
(SuperDARN, Redline Aurora,

proton energy flux, etc.)



OF technique—applications to the aurora
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OF technique—applications to the aurora

Applying this technique, we |’
easily identified auroral arcs’

motion
We reduced noise by re-

binning pixels in the original
image

We identified faint structures,
that could otherwise be
missed
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OF technique applications to the aurora

0 t0 e Easily identified the south-west motion of

100 this auroral arc

2 Optical flow calculation
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OF technique applications to the aurora

C to * We are also able to identify faint structures
100

e Optical flow calculation
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[Bristow et al., 2016]

OF technique—uses of SuperDARN for validation (preliminary)

A) 0920 UT - = B)0922:U1s: =Pl C) 0924 UT

Line-of-sight (LOS) velocity observations obtained by SuperDARN radars are projections of
the ionospheric plasma velocity along radar beam directions [e.g., Greenwald et al.,
1995; Chisham et al., 2007]

In the aurora, some of the structures move with convection (e.g., patchy pulsating aurora
and omega bands). SuperDARN measurements can help us validate the OF flow technique



OF technique—uses of ISR for validation (preliminary)
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* Incoherent Scatter Radars (ISR) overlap with auroral imagers
* These radars provide electron density, line-of-sight flow velocity, electron and ion
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Conclusions and Future work

+* Optical flow technique is a good approach to analyze structures’ motion

* Tracking of auroral arcs or streamers
* Tracking in STEREO COR2-L3 data

** Our future work includes:

e Aurora: Direct comparison with coherent and incoherent scatter
radar data(ongoing)
* Compare results with other techniques for validation/complement

Relevance to PUNCH

PUNCH science objectives: (1) to understand how coronal structures become the ambient solar
wind; and (2) to understand the dynamic evolution of transient structures in the young solar
wind. The PUNCH team tracks CME and CIR evolution, and characterizes cross-scale shock
dynamics

OF tracking could not only help PUNCH’s science objectives but also help us
validate the approach
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SuperDARN radars

Northern Hemisphere Southern Hemisphere
bW &7 SuperDARN radars

High frequency coherent

scatter radars that

measures signals

scattered from magnetic

| field-aligned plasma

" irregularities in the
ionospheric E and F
region

-45° -30° -15° Q° 15° 30 -13 150° -165° 135°
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* Line-of-sight (LOS) velocity observations obtained by SuperDARN radars are projections of
the ionospheric plasma velocity along radar beam directions [e.g., Greenwald et al.,
1995; Chisham et al., 2007]

* The radars scan over azimuth sectors of 16 to 20 beams separated by about 3.25°, typically
observing along a single direction for an integration period of 3 sto 6 s. Temporal

resolution of a full scan: 1-2 minutes
* LOS observations from a single site are insufficient to make this determination since the

projections do not provide any information on the velocity components perpendicular to
the lines of sight




SuperDARN radars - Velocity vectors

1. Old method: Spherical harmonic Fit (SHF)

 The SuperDARN measurements are used to determine a solution for the distribution of
electrostatic potential, @, expressed as a series expansion in spherical harmonics

* |n addition, data from a statistical model constrains the solution in regions of no data
coverage [Ruohoniemi and Baker, 1998]

* In this approach, the plasma velocities are considered divergence free

* The level of detail that can be represented depends on the order of the fit

e This imposes a limit on the minimum size of features that will be represented in the results

* Often the LOS observations exhibit more detail than can be represented in the SHF patterns,
producing great discrepancies
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SuperDARN radars - Velocity vectors

2. New method: Local Divergence-Free Fitting (LDFF)

A) 0920 UT - = B) 0922 UT

[Bristow et al., 2016]
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 The Local DivergencelFree Fitting

maps with a spatial resolution determined by the resolution of the observations rather than

an arbitrary fit order

C) 0924 UT

Figure: Sequence of alllsky
imager composites with
convection velocities
superposed. Imagers
the three Alaska

Poker Flat, Toolik Lake,
Kaktovik, are shown.
Frames are separated
2 min, starting with

Ut

(LDFF) technique can be used to produce convection

« Itislimited by the resolution of the observations and the observed noise level
 The LDFF technique allows us to identify and analyze the motion of small and mesoscale

(100s km) structures



=
=
o
)
o
o
rs)

50
100
150
200
250
300
350
400
450

200 250 300 350 400 450 500

150

100

o
o)



OF technique applications to STEREO — Radial component
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