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INTRODUCTION 

Tracking solar wind flows with PUNCH will 
make use of Computer Vision. CV exists 
across different domains of AI by achieving 
the recognition and/or tracking of certain 
objects in image series using Machine 
Learning, Deep Learning, or simpler image 
processing workflows. 

ML: Machine Learning
“ability to learn without being explicitly 
programmed” - Arthur Samuel, 1959

needs a good sense of the physical parameters at 
play to define an input space (e.g. input feature 
vectors) to make a classification, prediction, fit, etc…

AI: Artificial Intelligence
program performing tasks characteristic of 

human intelligence

DL: Deep Learning
Neural Nets made of 

discrete interconnected 
“deep” layers automatically 
processing its own set of 
features (edges, curves, 

scales, …) relevant to the 
problem (classification, 

prediction, …)

C
V: 

C
om

puter 

vision

AI, ML, DL, …, CV!



FLOW TRACKING METHOD WITH CV:
OPTICAL FLOWS

From Wikipedia: Pattern of apparent motion of objects, surfaces, and 
edges in a visual scene caused by the relative motion between an 
observer and a scene…

• Measured by a motion tracking algorithm
• Accuracy depends on the type of input imagery data and on the 

physical nature of the object being measured. 
• Problem formally defines as:

Vx Vy

Additional constraints needed to 
solve for Vx and Vy

After linearization:

+ higher 
order terms



Principle of “Local Correlation Tracking” 
(LCT, November & Simon, 1988)

LCT relies on the similarity metric of “correlation”, a number 
telling by how much two areas in consecutive images look 
alike. Among all possible displacements within a given 
window, the displacement of the feature (here, j -> k ) is the 
one for which that number is maximum. 

Optical flows



Optical flows

Exist in many flavors (Lucas – Kanade, Horn & Schunck, LCT, Fourier LCT). Perfect reconstruction of the plasma velocity not 
possible with optical flows. The mathematical formalism behind optical flows is very naive from the standpoint of Physics: there is no 
guarantee that the linearized optical flow equation has a physically meaningful solution.

Image 1 at t Image 2 at t + dt

Optical flow approximation: never true



In reality, the tracking window in which the brightness 
matching happens must be large enough to have a 
solution, but small enough to keep a decent resolution. It’s 
a compromise and the matching process is often 
ambiguous (ill-posed problems). 
Intensity regions (e.g. granules or PDS) can look similar 
enough to “fool” the matching process-> errors!

errors

Hinode/SOT

Optical flows



Optical flows

The mathematical formalism behind optical flows is very naive from the standpoint of 
Physics: there is no guarantee that the linearized optical flow equation even has a 
physically meaningful solution.

With heliospheric imagery, without stereoscopy, 
what guarantee do we have that matching 
patterns at the next time step corresponds to the 
flow of a coherent density structure? 

In fact, we do not: 
=> source of many uncertainties 

STEREO/COR2 Deep-exposure 
campaign. Courtesy of Craig Deforest

Image 1 at t Image 2 at t + dt

???



Home-made experiment…

Optical flows track apparent motion…

Optical flows



The aperture problem refers to the ambiguity in determining the true velocity using a local motion detector.

Optical flows



The aperture problem refers to the ambiguity in determining the true velocity using a local motion detector.

Optical flows

Optical flows cannot provide flow information in 
the interior of uniform regions of the image

Image Credits: Matlab documentation:
https://www.mathworks.com/help/supportpkg/parrot/ug/optical-flow-
with-parrot-minidrones.html

Background: STEREO/COR2 data. Deep Exposure 
campaign (courtesy of Craig Deforest)

Propagation of a plasma density structure (purple) that has poor 
contrast, and whose horizontal dimension grows from top to 
bottom, revealing itself in the local subfield as it propagates only 
upward, can be interpreted as a lateral motion of plasma.

wrong

https://www.mathworks.com/help/supportpkg/parrot/ug/optical-flow-with-parrot-minidrones.html
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Supergranules

Balltracking
Potts et al. 2004, Attie et al. 2017

‣ Put balls between the granules
‣ Settle into local minima
‣ Granules push the balls around
‣ Differentiate final positions
‣ Average (time & space)

Alternative to optical flows

Balltracking

Magnetic Balltracking

Attie & Innes 2015
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Tracking plasma momentum without similarity metric or pattern matching



For tracking PDS, the tracking balls must learn how to track local 
minima better than they do with more simpler structures like granules:
• Training set: establish the true position of the local extrema in 

each image. 
• Training phase: learn the tracking parameters that minimize 

discrepancies between the final ball positions and the known local 
extrema 

• Cross-validation: assess accuracy in other subfield of data cube. 
• Build flow maps by running the process over the whole data cube. 
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Parameters to learn: 
§ multiplier to st. dev. for 

converting the intensity map to  
the data surface 

§ sphere radius
§ “fluid” penetration parameter
§ Acceleration modifier
§ Damping time 
§ Nb of integration steps between 

images

Training and Cross-Validation set built with 
COR2 deep-exposure campaign

Magnetic Balltracking + ML

Alternative to optical flows



For tracking PDS, the tracking balls must learn how to 
track local minima better than they do with more simpler 
structures like photospheric granules:
• Training set: establish true position of local extrema 
• Training phase: learn the tracking parameters that 

minimize discrepancies between ball positions and 
local extrema 

• Cross-validation: assess accuracy in other subfield of 
data cube. 

• Build flow maps by running the process over the 
whole data cube. 

Parameters to learn: 
§ multiplier to st. dev. for 

converting the intensity map to  
the data surface 

§ sphere radius
§ “fluid” penetration parameter
§ Acceleration modifier
§ Damping time 
§ Nb of integration steps between 

images

Training and Cross-Validation set built with 
COR2 deep-exposure campaign

Limits of the method
• Optically thin plasma: ambiguity in the 

displacements of the local extrema
• Velocity of a given tracking ball may become 

unrelated to the velocity of the density 
structure. 

• Require additional physical constraints for 
self-correction (more physics in the cost 
function, use Kalman filters, exploit the 
different polarizations from PUNCH) 

Advantages of the method
o Inherits all advantages of Magnetic Balltracking
o Does not use optical flow approximations
o Robust w.r.t to intensity changes
o Univocal labelling of the tracked features (label 

<=> ball number) – useful to trace structures 
back to their origin (solar origin, or formed on 
the fly, objective of WG 1B)

o Combines well with segmentation techniques 
for extracting the area of the PDS. 

o Highly efficient: equation of motions of the balls 
are all independent because the balls do not 
collide, highly parallel. 

Alternative to optical flows

Magnetic Balltracking + ML



Deep Learning for tracking plasma flow

Supervised Deep Learning 
Neural Network: 

• MHD simulations to train a 
Neural Net to infer velocity 
flows from real observations

• Promising attempts with 
photospheric flows (Tremblay 
& Attie, 2020). 

• Applying a similar architecture 
on PUNCH data and solar 
wind simulation is foreseen. 

Caveats: 
• The NN learns biases of the simulations
• Restrict the discovery space by only 

reproducing what is known from the 
training model. 

• NNs are poorly explainable, uncertainty 
of inference on real data difficult to 
obtain. 

However…
• Need a baseline
• Need to find out intrinsic limitations of the 

NN architecture
• the simpler the simulation, the better 



Guidelines for PUNCH data products related to flow tracking

Assess Accuracy of Flow Tracking Methods:
Ø Each algorithm has its own uncertainties & biases. A result with error bars from an imperfect algorithm is more credible than

the perfect result from a perfect algorithm because that one just does not exist.
Ø Not a competition between methods – need ensemble of methods. Discrepancies between methods => error analysis
Ø Leverage MHD simulation to get a ground truth and a test set => baseline & sanity checks. e.g. flow tracking challenge from

Vadim Uritsky & Valmir Moraes Filho, Aleida Higginson ARMS, Elena Provornikova with GAMERA-Helio simulations.

Heads-up on workflow: ~150 GB / day
o may require efficient larger-than-memory data handling
o Choose libraries and languages wisely for Big Data science
o Document your code with Git!

Communication is key. Remote or hybrid work could become the new normal. Cross-organization discussions should live in a
continuum and not just in the narrow time constraints of our workshops and meetings. See NASA’s new permanent, cross-
organization forum at https://helionauts.org to stay connected with the Heliophysics community. Inside HelioNauts, PUNCH
WG leaders are welcome to create their own focused group for more private professional discourse. More than 180
professional heliophysicists joined. You can share and advertize your papers with a much greater impact and persistent
visibility than you would ever have on Facebook or Slack. This platform will eventually be advertized in SolarNews.

https://helionauts.org/

