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Outline

* Review work based on 3D sims — large-scale variability; solar activity
effects

* Review recent observations that suggest a "rugged/corrugated" surface

* 3D simulations with turbulence modeling — turbulence effects on
variability of Alfven zone

e Discussion and summary



3D MHD simulations of global solar wind
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3D MHD simulations of global solar wind — solar activity and Alfven surface

Increased complexity of magnetic topology brings Alfven surface lower
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Observations - solar activity and Alfven surface

* Alfven radius appears correlated with sunspot number
e Caveat — 1 AU measurements; assumed radial scalings for B and n; constant speed
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Corrugated Alfven surface - remote sensing observations
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Corrugated Alfven surface - In situ observations
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Corrugated Alfven surface - combined in-situ & remote observations

Solar wind and Alfven speeds
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Global simulation with turbulence modeling — Schematic of Reynolds-Averaging Approach

Reynolds decomposition splits fields (3) into mean (a) and fluctuation (a'; arbitrary amplitude):

Explicitly resolve large-scale/mean flow

-

Large scale (mean field) model equations:

Closures:
- Eddy viscosity (kinetic & magnetic)
- Production/mixing terms

Turbulent transport coefficients

- Momentum NEW TERMS:

ic fiel Fluctuation pressure
B Magr_]etlc ield Reynolds stresses
- Density Turbulent electric field
- internal energies (Te & Tp) Heat function/dissipation
- additional species (PUlIs, interstellar H)
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Evaluate required turbulence parameters:
Transport equations for energy, cross
helicity, correlation scales

Plasma kinetic theory:
- branching between e/p heating
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Global sim w' turbulence modeling — Comparison with five PSP orbits
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Alfven surface from 10 deg dipole run
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Alfven zone (with magnetic turbulence envelope)
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Alfven zone (with magnetic/flow turbulence envelopes)
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Alfven zone (with magnetic and flow turbulence envelopes)
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* Lotova enhanced radio
scintillation/fluctuations at 15 — 30 R

e Variability from local fluctuations, not
large-scale source-related variations




Alfven zone (with turbulence envelopes)
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* Lotova enhanced radio
scintillation/fluctuations at 15 — 30 R

e Variability from local fluctuations, not
large-scale source-related variations

/ Explicit fluctuations -
B+6B

e ateach grid point a random magnetic

B fluctuation is drawn from a Gaussian

T distribution constrained by model

* Dist. has standard dev. equal to local 6B
at that grid point




Corrugated Alfven zone (with explicit fluctuations)

Explicit fluctuations -

e at each grid point a random magnetic
fluctuation is drawn from a Gaussian
distribution constrained by model

* Dist. has standard dev. equal to local 6B
at that grid point

* (Can use velocity or density fluctuations
too, in principle




Musings on “fractal” Alfven zone

Fractal nature —
* How long is the coast of Britain? -
Mandelbrot
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Musings on “fractal” Alfven zone

Fractal nature —

* How long is the coast of Britain? -
Mandelbrot

* More like 1000 Islands, NY

* First/inner Alfven surface, and final/outer
Alfven surface




Corrugated/“fractal” Alfven zone (with explicit fluctuations)
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Corrugated/“fractal” Alfven zone — solar min (left) and max (right)




Corrugated Alfven zone — comparison with PSP

e Virtual PSP trajectory along sim
driven by Nov 2018 magnetogram
e PSP data at 1-hr cadence
100 g7 """ """ 7T

Nov-02 Nov-04 Nov-06 Nov-08
mo—day in 2018




Discussion

* Turbulence implies an extended spatial region of transition from sub
to super Alfvenic flow

* Enhanced heating/dissipation; nonlinear interactions of inward and
outward propagating modes; enhanced SEP scattering.. See Bill
Matthaeus' slides later today

e Can PUNCH detect inward/outward modes over this extended zone?

* Angular momentum loss of Sun — In Weber & Davis (1967) picture 1y
is “lever arm” of the corona... impact of turbulent variability?
Usmanov+ 2018 showed that statistical turbulence reduces ang.
mom. loss rate

» Effects of solar activity on Alfven surface — discrepancy between
models and observations



Summary

* |n addition to large-scale variability and solar-cycle effects, smaller scale
structure are suggested by recent observations

* 3D global simulations with turbulence modeling are a useful tool to
examine these effects

* Alfven zone - statistical envelopes bounded by rms fluctuations

* Corrugated first/final Alfven surface... "fractal" Alfven zone with blobs of
sub/super-Alfvenic wind

e Future observations by PSP (may have already sampled Alfven zone...) and PUNCH
will shed more light on the accuracy of this picture



Extra Slides



Spatial Scales Resolved in Simulations

* Resolution ~ 700x120x240in7,08,¢ (r =1 R -5 AU)
* Grid scale A is generally within a factor of few correlation scales
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* Very good coverage of large scales

* Coverage of onset of turbulence
down to = 0.25 A for observations
at 50 R apparent distance




3D MHD simulations of global solar wind
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Two-Fluid Reynolds Averaged MHD Equations
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e Ps and Pg are the proton and electron pressure ) is the Reynolds stress tensor

e u is the velocity in the inertial frame is the mean turbulent electric field

e v is the velocity in the rotating frame

Q7 is the turbulent heating rate
e 75 is the electron-proton Coulomb collision rate

qg is the electron heat flux
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mean flow

turbulence

Two-Fluid Reynolds-averaged MHD with Turbulence Transport

Turbulence transport equations obtained by subtracting mean-flow eqns. from full egns., and averaging.
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See Usmanov et al., 2018 for more details

9 ) 2 . . . .
o 7 = (v'*+ %) is (twice the incompressible
yurbulent energy per unit mass
2(v' - b’)

—5 50 18 the normalized cross helicity
(v'"2 + b'?)

® 0. =

e )\ is the similarity (correlation) length scale

Turbulence modeling assumptions —

* Incompressible and transverse fluctuations

e Turbulent stresses modeled in terms of
large-scale gradients (shear)

* NL terms modeled dimensionally (von
Karman similarity)

* Physically and empirically motivated ICs and BCs
* Magnetogram-based or dipolar source magnetic
field

* Numerical domain from coronal base to few AU
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Closures and other terms (extra slide)

. Electron-proton collision frequency: Modeling NL terms
(O N1/2 AN 1on (L. T \3/2 5
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0 |
. Classical (Spitzer) electron heat conduction (below 5 R): o7 (7) = =224 - (2 - Vz))
qs = —xkB(B - V)T k=84x10"7T> " <:2><,:3>-1/2
. Collisionless (Hollweg) heat conduction: au = (3/2)auPev 972 ) Z§+
| o ot N\

. Turbulent heating: Q1 = Of+(;;)pz

TSDIA closure for turbulent stresses:
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Usmanov et al., 2018

1 y.
—R = ;Kpl —vgS +vyM

P )
]\'R == CTDZQ/Q

2
S =Vu+Yu' = %(V -u)l

¢

| DO

T

M=VV,+ VVE —

[

.

vie = 0.27Z ) vy = 0.220.2 )

29



Boundary/Initial conditions and parameters (extra slide)

Symbol Description Value
No proton number density in the mitial state at 1 R, 8 x 107 cm™®
T electron and proton temperature in the initial state at 1 R, 1.8 x 10°K
By magnetic field strength of dipole at 1 R, 12 G
dvg driving amplitude of fluctuations in the initial state at 1 R,  35kms™!
fo normalized cross helicity in the mitial state 0.8
Ao correlation scale of turbulence in the initial state at at 1 R,  0.015 R,
Symbol Description Value
op normalized energy difference (residual energy) —1/3
9 adiabatic index 5/3
ay constant in Hollweg’s collisionless heat flux 1.05
a, 3 Karman—Taylor constants 2. 0128
i fraction of turbulent heating for protons 0.6
TH collisional/collisionless electron heat flux transition region 5 Ry

Usmanov et al., 2018
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Sample Results — Meridonal planes (30 Rs to 5 AU) and Comparison with Ulysses Data
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Usmanov et al., 2018
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Radial trends aggregrated from
first five PSP orbits

Left: PSP data (symbols) aggregated from Orbits
1 to 5. Red curves show results from model,
accumulated from five runs corresponding to
the five respective orbits.

Right: Mean values within bins of 10 solar radii
from PSP data (blue circles) and model (red
diamonds). Bars above and below symbols
represent standard deviation.

Averages reveal that radial trends in mean flow
are quite well captured by the

model (regardless of transient features seen in
time series plots)

Broad trends in turbulence properties also
reproduced
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