Insights from 3D Simulations, Remote Imaging, and PSP Data on the Location and Dynamics of the Corrugated Alfven Zone

Rohit Chhiber

University of Delaware & NASA Goddard Space Flight Center

Collaborators: William Matthaeus, Arcadi Usmanov, Melvyn Goldstein

PUNCH 2 Science Meeting

10th August 2021

Outline

- Review work based on 3D sims large-scale variability; solar activity effects
- Review recent observations that suggest a "rugged/corrugated" surface
- 3D simulations with turbulence modeling turbulence effects on variability of Alfven zone
- Discussion and summary

3D MHD simulations of global solar wind

 r_A is distance where $U > V_A$, where $V_A = \frac{B}{\sqrt{4\pi\rho}}$

Large-scale variability – solar-source related; solar activity effects

3D MHD simulations of global solar wind – solar activity and Alfven surface

Increased complexity of magnetic topology brings Alfven surface lower

Also seen in Pinto+ 2017; Perri+ 2018; Chhiber+ 2019

Observations - solar activity and Alfven surface

- Alfven radius appears correlated with sunspot number
- Caveat 1 AU measurements; assumed radial scalings for B and n; constant speed

Corrugated Alfven surface - remote sensing observations

DeForest+ 2018

- Lotova+ (1985, 1997) region of enhanced scintillation $\sim 10-30 R_{\odot}$
- Density fluctuations imply fluctuations in V_A

6

Corrugated Alfven surface - In situ observations

Verscharen+ 2021; Ulysses data

Liu+ 2021; PSP data

Corrugated Alfven surface - combined in-situ & remote observations

• Wexler+ (2020) used 600 s averages of PSP measurements

•
$$r_A \sim 10 - 27 R_{\odot}$$

Global simulation with turbulence modeling – Schematic of Reynolds-Averaging Approach

Reynolds decomposition splits fields (ã) into mean (a) and fluctuation (a'; arbitrary amplitude): $ilde{\mathbf{a}} = \mathbf{a} + \mathbf{a}'$

Explicitly resolve large-scale/mean flow

Usmanov+ 2018, ApJ

Global sim w' turbulence modeling – Comparison with five PSP orbits

Chhiber+ 2021, in press @ ApJ 10

Alfven surface from 10 deg dipole run

- $V_A = B/\sqrt{4\pi\rho}$
- Assume a reasonable Alfven ratio $(r_A = \delta u^2 / \delta B^2)$; convert Z^2 to rms velocity and magnetic fluctuations

Alfven zone (with magnetic turbulence envelope)

- $V_A = B/\sqrt{4\pi\rho}$
- Assume a reasonable Alfven ratio $(r_A = \delta u^2 / \delta B^2)$; convert Z^2 to rms velocity and magnetic fluctuations

Alfven zone (with magnetic/flow turbulence envelopes)

- $V_A = B/\sqrt{4\pi\rho}$
- Assume a reasonable Alfven ratio $(r_A = \delta u^2 / \delta B^2)$; convert Z^2 to rms velocity and magnetic fluctuations

Alfven zone (with magnetic and flow turbulence envelopes)

- $V_A = B/\sqrt{4\pi\rho}$
- Assume a reasonable Alfven ratio $(r_A = \delta u^2 / \delta B^2)$; convert Z^2 to rms velocity and magnetic fluctuations
- Lotova enhanced radio scintillation/fluctuations at $15 30 R_{\odot}$
- Variability from local fluctuations, not large-scale source-related variations

Alfven zone (with turbulence envelopes)

- $V_A = B/\sqrt{4\pi\rho}$
- Assume a reasonable Alfven ratio $(r_A = \delta u^2 / \delta B^2)$; convert Z^2 to rms velocity and magnetic fluctuations
- Lotova enhanced radio scintillation/fluctuations at $15 30 R_{\odot}$
- Variability from local fluctuations, not large-scale source-related variations

Explicit fluctuations -

- at each grid point a random magnetic fluctuation is drawn from a Gaussian distribution constrained by model
- Dist. has standard dev. equal to local δB at that grid point

Corrugated Alfven zone (with explicit fluctuations)

Explicit fluctuations -

- at each grid point a random magnetic fluctuation is drawn from a Gaussian distribution constrained by model
- Dist. has standard dev. equal to local δB at that grid point
- Can use velocity or density fluctuations too, in principle

Musings on "fractal" Alfven zone

Fractal nature –

 How long is the coast of Britain? -Mandelbrot

Musings on "fractal" Alfven zone

Fractal nature -

- How long is the coast of Britain? -Mandelbrot
- More like 1000 Islands, NY
- First/inner Alfven surface, and final/outer Alfven surface

Corrugated/"fractal" Alfven zone (with explicit fluctuations)

Fraction of points that are sub-Alfvenic at different *r*

Corrugated/"fractal" Alfven zone – solar min (left) and max (right)

Corrugated Alfven zone – comparison with PSP

Discussion

- Turbulence implies an extended spatial region of transition from sub to super Alfvenic flow
- Enhanced heating/dissipation; nonlinear interactions of inward and outward propagating modes; enhanced SEP scattering.. See Bill Matthaeus' slides later today
- Can PUNCH detect inward/outward modes over this extended zone?
- Angular momentum loss of Sun In Weber & Davis (1967) picture r_A is "lever arm" of the corona... impact of turbulent variability?
 Usmanov+ 2018 showed that statistical turbulence reduces ang. mom. loss rate
- Effects of solar activity on Alfven surface discrepancy between models and observations

Summary

- In addition to large-scale variability and solar-cycle effects, smaller scale structure are suggested by recent observations
- 3D global simulations with turbulence modeling are a useful tool to examine these effects
- Alfven zone statistical envelopes bounded by rms fluctuations
- Corrugated first/final Alfven surface... "fractal" Alfven zone with blobs of sub/super-Alfvenic wind
- Future observations by PSP (may have already sampled Alfven zone...) and PUNCH will shed more light on the accuracy of this picture

Extra Slides

Spatial Scales Resolved in Simulations

- Resolution ~ 700×120×240 in r, θ, ϕ ($r = 1 R_{\odot}$ 5 AU)
- Grid scale Δ is generally within a factor of few correlation scales

PUNCH

- Very good coverage of large scales
- Coverage of onset of turbulence down to $\approx 0.25 \lambda$ for observations at 50 R_s apparent distance

3D MHD simulations of global solar wind

Large-scale variability – solar-source related; solar activity effects

Context predictions for time PSP spends under critical surfaces

5-deg tilted dipole; Chhiber+ 2019

Two-Fluid Reynolds Averaged MHD Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0 \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \mathbf{u} - \frac{1}{4\pi} \mathbf{B} \mathbf{B} + \left(P_S + P_E + \frac{B^2}{8\pi} + \frac{\langle B'^2 \rangle}{8\pi} \right) \mathbf{I} + \mathcal{R} \right] &= -\rho \left(\frac{GM_{\odot}}{r^2} + \mathbf{\Omega} \times \mathbf{u} \right) \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B} + \boldsymbol{\varepsilon}_m \sqrt{4\pi\rho}) \\ \frac{\partial P_S}{\partial t} + (\mathbf{v} \cdot \nabla) P_S + \gamma P_S \nabla \cdot \mathbf{u} + (\gamma - 1) \frac{P_S - P_E}{\tau_{SE}} = f_p Q_T \\ \frac{\partial P_E}{\partial t} + (\mathbf{v} \cdot \nabla) P_E + \gamma P_E \nabla \cdot \mathbf{u} + (\gamma - 1) \left[\frac{P_E - P_S}{\tau_{SE}} + \nabla \cdot \mathbf{q}_H \right] = (1 - f_p) Q_T \end{aligned}$$

- P_S and P_E are the proton and electron pressure
- **u** is the velocity in the inertial frame
- **v** is the velocity in the rotating frame
- τ_{SE} is the electron-proton Coulomb collision rate
- $\mathcal{R} = \langle \rho \mathbf{v}' \mathbf{v}' \frac{\mathbf{B}' \mathbf{B}'}{4\pi} \rangle$ is the Reynolds stress tensor • $\boldsymbol{\varepsilon}_m = \frac{\langle \mathbf{v}' \times \mathbf{B}' \rangle}{(4\pi\rho)^{1/2}}$ is the mean turbulent electric field
- Q_T is the turbulent heating rate
- \mathbf{q}_H is the electron heat flux

Two-Fluid Reynolds-averaged MHD with Turbulence Transport

• Turbulence transport equations obtained by subtracting mean-flow eqns. from full eqns., and averaging.

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \mathbf{v}\right) &= 0 \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \mathbf{u} - \frac{1}{4\pi} \mathbf{B} \mathbf{B} + \left(P_S + P_E + \frac{B^2}{8\pi} + \frac{\langle B'^2 \rangle}{8\pi}\right) \mathbf{I} + \mathcal{R}\right] &= -\rho \left(\frac{GM_{\odot}}{r^2} + \Omega \times \mathbf{u}\right) \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times \left(\mathbf{v} \times \mathbf{B} + \boldsymbol{\varepsilon}_m \sqrt{4\pi\rho}\right) \\ \frac{\partial P_S}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) P_S + \gamma P_S \nabla \cdot \mathbf{u} + (\gamma - 1) \frac{P_S - P_E}{\tau_{SE}} &= f_p Q_T \\ \frac{\partial P_E}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) P_E + \gamma P_E \nabla \cdot \mathbf{u} + (\gamma - 1) \left[\frac{P_E - P_S}{\tau_{SE}} + \nabla \cdot \mathbf{q}_H\right] &= (1 - f_p) Q_T \\ \frac{\partial Z^2}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) Z^2 + \frac{(1 - \sigma_D) Z^2}{2} \nabla \cdot \mathbf{u} + \frac{2}{\rho} \mathcal{R} : \nabla \mathbf{u} + 2\boldsymbol{\varepsilon}_m \cdot (\nabla \times \mathbf{u}) - (\mathbf{V}_A \cdot \nabla) (Z^2 \sigma_c) \\ &+ Z^2 \sigma_c \nabla \cdot \mathbf{V}_A &= -\frac{\alpha f^+(\sigma_c) Z^3}{\lambda} \\ \frac{\partial (Z^2 \sigma_c)}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) (Z^2 \sigma_c) + \frac{Z^2 \sigma_c}{2} \nabla \cdot \mathbf{u} + \frac{2}{\rho} \mathcal{R} : \nabla \mathbf{V}_A + 2\boldsymbol{\varepsilon}_m \cdot (\nabla \times \mathbf{u}) - (\mathbf{V}_A \cdot \nabla) Z^2 \\ &+ (1 - \sigma_D) Z^2 \nabla \cdot \mathbf{V}_A &= -\frac{\alpha f^-(\sigma_c) Z^3}{\lambda} \\ \frac{\partial \lambda}{\partial t} + \left(\mathbf{v} \cdot \nabla\right) \lambda &= \beta f^+(\sigma_c) Z \end{aligned}$$

• $Z^2 = \langle v'^2 + b'^2 \rangle$ is (twice the incompressible yurbulent energy per unit mass

•
$$\sigma_c = \frac{2\langle \mathbf{v}' \cdot \mathbf{b}' \rangle}{\langle v'^2 + b'^2 \rangle}$$
 is the normalized cross helicity

•
$$\lambda$$
 is the similarity (correlation) length scale

Turbulence modeling assumptions –

- Incompressible and transverse fluctuations
- Turbulent stresses modeled in terms of large-scale gradients (shear)
- NL terms modeled dimensionally (von Karman similarity)
- Physically and empirically motivated ICs and BCs
- Magnetogram-based or dipolar source magnetic field
- Numerical domain from coronal base to few AU

mean flow

Closures and other terms (extra slide)

• Electron-proton collision frequency:

$$\nu_E = \frac{8(2\pi m_e)^{1/2} e^4 N_E \ln \Lambda}{3m_p (k_B T_E)^{3/2}} \qquad \ln \Lambda = \ln \left[\frac{3(k_B T_E)^{3/2}}{2\pi^{1/2} e^3 N_E^{1/2}} \right]$$

- Classical (Spitzer) electron heat conduction (below 5 R_{\odot}): $\mathbf{q}_{\mathrm{S}} = -\kappa \hat{\mathbf{B}} (\hat{\mathbf{B}} \cdot \nabla) T_E \qquad \kappa = 8.4 \times 10^{-7} T_E^{5/2}$
- Collisionless (Hollweg) heat conduction: $\mathbf{q}_{\mathrm{H}} = (3/2) \alpha_{\mathrm{H}} P_E \mathbf{v}$

• Turbulent heating:
$$Q_T = \frac{\alpha f^+(\sigma_c)\rho Z^3}{2\lambda}$$

• TSDIA closure for turbulent stresses:

$$\boldsymbol{\varepsilon}_{m} = \bar{\alpha} \mathbf{B} - \bar{\beta} \nabla \times \mathbf{V}_{A} + \bar{\gamma} \nabla \times \mathbf{v}$$
$$\nu_{M} = (7/5) \bar{\gamma}.$$
$$\nu_{K} = (7/5) \bar{\beta}$$

Usmanov et al., 2018

Modeling NL terms

$$\frac{\partial \mathbf{z}_{\pm}}{\partial t} = -\mathbf{z}_{\mp} \cdot \nabla \mathbf{z}_{\pm}$$

$$\frac{\partial}{\partial t} \langle z_{\pm}^2 \rangle = -2 \langle \mathbf{z}_{\pm} \cdot (\mathbf{z}_{\pm} \cdot \nabla \mathbf{z}_{\pm}) \rangle$$

$$\sim - \langle z_{\pm}^2 \rangle \frac{\langle z_{\pm}^2 \rangle^{-1/2}}{\lambda_{\pm}},$$

$$\frac{\partial Z^2}{\partial t} \sim -\frac{Z^3}{\lambda}$$

$$\frac{1}{\rho} \mathcal{R} = \frac{2}{3} K_R \mathbf{I} - \nu_K \mathcal{S} + \nu_M \mathcal{M}$$
$$K_R = \sigma_D Z^2 / 2$$
$$\mathcal{S} = \nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} (\nabla \cdot \mathbf{u}) \mathbf{I}$$
$$\mathcal{M} = \nabla \mathbf{V}_A + \nabla \mathbf{V}_A^T - \frac{2}{3} (\nabla \cdot \mathbf{V}_A) \mathbf{I}$$
$$\nu_K \approx 0.27 Z \lambda \qquad \nu_M \approx 0.22 \sigma_c Z \lambda$$

Boundary/Initial conditions and parameters (extra slide)

Symbol	Description	Value
N_0	proton number density in the initial state at 1 R_{\odot}	$8\times 10^7{\rm cm}^{-3}$
T_0	electron and proton temperature in the initial state at 1 R_{\odot}	$1.8\times 10^6{\rm K}$
B_0	magnetic field strength of dipole at 1 R_{\odot}	12 G
δv_0	driving amplitude of fluctuations in the initial state at 1 R_{\odot}	$35{\rm kms^{-1}}$
σ_{c0}	normalized cross helicity in the initial state	0.8
λ_0	correlation scale of turbulence in the initial state at at 1 R_{\odot}	$0.015 R_{\odot}$

Symbol	Description	Value
σ_D	normalized energy difference (residual energy)	-1/3
γ	adiabatic index	5/3
$\alpha_{ m H}$	constant in Hollweg's collisionless heat flux	1.05
α, β	Kármán–Taylor constants	2, 0.128
f_p	fraction of turbulent heating for protons	0.6
$r_{ m H}$	collisional/collisionless electron heat flux transition region	$5 R_{\odot}$

Usmanov et al., 2018

Sample Results – Meridonal planes (30 Rs to 5 AU) and Comparison with Ulysses Data

Radial trends aggregrated from first five PSP orbits

- Left: PSP data (symbols) aggregated from Orbits 1 to 5. Red curves show results from model, accumulated from five runs corresponding to the five respective orbits.
- Right: Mean values within bins of 10 solar radii from PSP data (blue circles) and model (red diamonds). Bars above and below symbols represent standard deviation.
- Averages reveal that radial trends in mean flow are quite well captured by the model (regardless of transient features seen in time series plots)
- Broad trends in turbulence properties also reproduced

