

https://whpi.hao.ucar.edu/whpi_campaigns.php

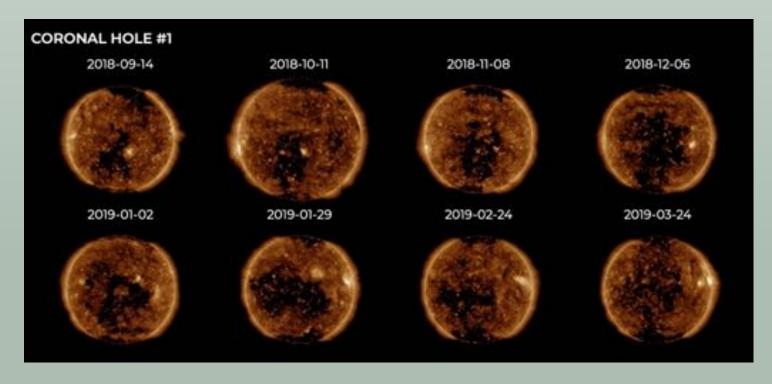
Time periods of general interest when focused coordinated observations are taken Provide common intervals for model-data comparisons and collaborative investigations

CAMPAIGN PERIODS:

Recurrent Coronal Holes/High Speed Solar Wind Streams Campaign, Mar 12 - Apr 8 2019

Total Solar Eclipse Campaign, Jun 29 - Jul 26, 2019

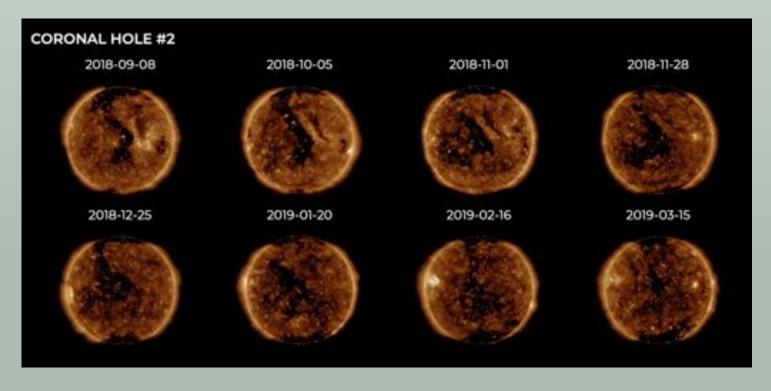
PARKER SOLAR PROBE CAMPAIGNS:


Parker Solar Probe 4th Perihelion Campaign, Jan 15 - Feb 11, 2020

Parker Solar Probe 7th Perihelion Campaign, Jan 12 - 23, 2021

Parker Solar Probe 8th Perihelion Campaign, Apr 28 - May 7, 2021

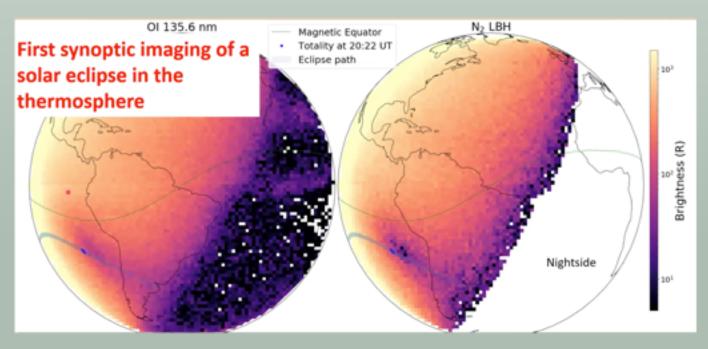
Recurrent Coronal Holes/High Speed Solar Wind Streams Campaign Mar 12 - Apr 8 2019, CR 2215



Coronal holes and the associated solar wind streams are common during the descending and minimum phase of the solar cycle

2 very long lived low-latitude coronal holes visible on the Sun for many rotations from mid 2018 to April 2019

Recurrent Coronal Holes/High Speed Solar Wind Streams Campaign Mar 12 - Apr 8 2019, CR 2215

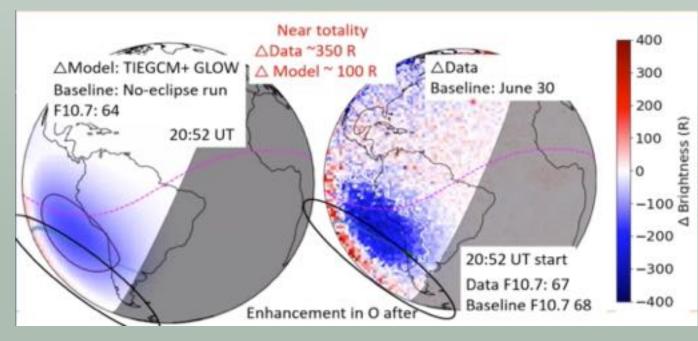


Coronal holes and the associated solar wind streams are common during the descending and minimum phase of the solar cycle

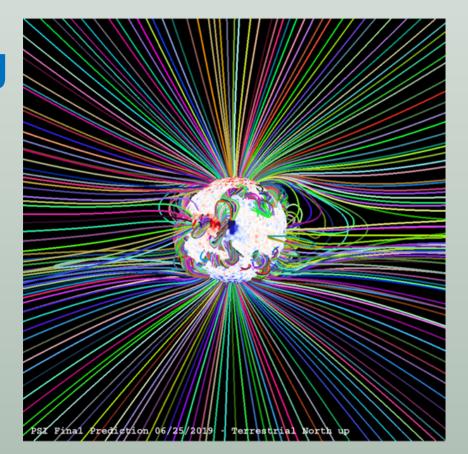
2 very long lived low-latitude coronal holes visible on the Sun for many rotations from mid 2018 to April 2019

Total Solar Eclipse Campaign Jun 29 - Jul 26, 2019

Courtesy Saurav Aryal and GOLD team


Solar eclipses are rare opportunities to observe the low corona

All solar telescopes involved Joined by geospace observatories, including the GOLD satellite



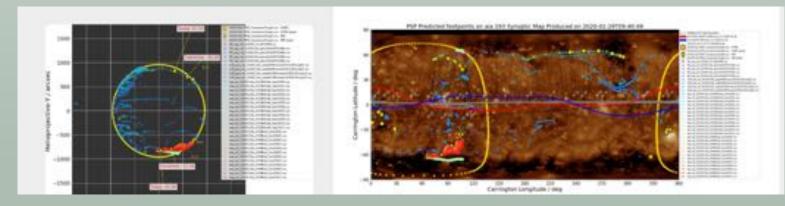
WHPI Observing

Total Solar Eclipse Campaign Jun 29 - Jul 26, 2019

Courtesy Saurav Aryal and GOLD team

MHD Model of the solar corona from PSI (66 million grid points!)

Extensive modeling effort: Solar models & Upper atmospheric models


PSP PERIHELION CAMPAIGNS

4th PSP Perihelion Jan 15 - Feb 11, 2020 7th PSP Perihelion Jan 12 - 23, 2021 (Nour Raouafi PI) Unique opportunity for coordinated observations. PSP nearly radially aligned with the Earth and several satellites

8th PSP Perihelion Apr 28 - May 7, 2021 (Stefan Hofmeister PI) Focused on high resolution observations of coronal holes. Many large solar telescopes involved: GREGOR, SST, BBSO, DST, and many radio observatories

WHPI coordinated activities ahead of the campaigns: network of ~40 ground-based observatories around the world 7 heliospheric, 15 geospace, and 3 planetary space missions ~600 participants

Target information were posted on the WHPI webpage, based on the prediction of the modeling teams lead by P. Riley and S. Badman Thank you to all the observatories in space and on the ground and to all the modelers that joined the WHPI campaigns !!

WHPI Supporting Observatories

Advanced Modular Incoherent Scatter Radar (AMISR) Arecibo Observatory Baikal Astrophysical Observatory (BAO) Big Bear Solar Observatory (BBSO) Catania Astrophysical Observatory (INAF-OACT) Crimean Astrophysical Observatory (CrAO) Dunn Solar Telescope Expanded Owens Valley Solar Array (EOVSA) Expanded Very Large Array (EVLA) Félix Aguilar Observatory Fuxian Solar Observatory (FSO) Global Oscillation Network Group (GONG) GREGOR Ground Magnetometers (USGS, SuperMAG Databases) Hida Observatory Huairou Solar Observing Station (HSOS) Hvar Observatory Istituto Ricerche Solari Locarno (IRSOL)

Jicamarca Radio Observatory (JRO) Kanzelhöhe Observatory (KSO) Kislovodsk Mountain Astronomical Station (KMAS) Latin American Giant Observatory/NEWRUS Lomnicky Stit Observatory Long Wavelength Array (LWA) Low-Frequency Array (LOFAR) Mauna Loa Solar Observatory (MLSO) Meudon Observatory MIT Haystack's Millstone Hill Geospace Facility Nançay Decameter Array (NDA) Nobeyama Radioheliograph (NoRH) Osservatorio Astronomico di Roma Pic du Midi Observatory Sardinia Radio Telescope (SRT) Sayan Solar Observatory Siberian Radioheliograph (SRH) SST

And in Space: Hinode, IRIS, SDO, SOHO, STEREO, SORCE, NuStar, GOLD, ACE, Wind, PSP, AIM, Geotail, ICON, MMS, TIMED, Themis, Van ALLEN, Juno, Maven, New Horizon, and many more

PARKER Solar Probe

A MISSION TO TOUCH THE SUN

Parker Solar Probe Encounters Supporting Campaigns

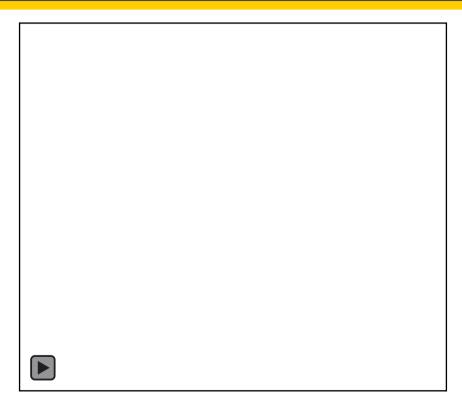
Nour E. Raouafi – Project Scientist

Johns Hopkins Applied Physics Laboratory, Laurel, MD

<u>Nour.Raouafi@jhuapl.edu</u>

WHPI Workshop, Sep. 15, 2020

PSP Encounter 4 & 7 Science Opportunities


- **Sun–(inner) heliosphere:** PSP shows a strongly coupled system more than we thought
- **PSP-Sun connection:** need as many eyes as possible to help build the big picture

• Encounter 7:

- Can be seen from Earth
- Provides opportunities for synergies with ground-based observatories and space missions

Campaigns carried out with success including tens of worldwide ground-based observatories and space-born missions

Supporting Campaign for Encounters 4 & 7

~50 observatories around the globe support Parker Enc. 4

- Ground: >40 observatories
- Space: Hinode, IRIS, SDO, STEREO, NuSTAR, MMS, ...
- Modeling: 5 teams provide predictions of the SC Bconnectivity
- Coordination:

Table 1: Observations types, Leads and their roles, and the level of support for PSP Encounter 4.

	Role	Main Contact(s)	Level of Support
Project Science	PSP Project coordination	Robert Allen (JHUAPL)	Overall coordination
Ground-based observations (optical)	Provide magnetic field maps and images at different wavelengths and heights in the solar atmosphere	Sarah Gibson & Giuliana de Toma (NCAR/HAO)	22 observatories
Ground-based observations (radio)	Provide radio data such as radio bursts, etc.	Angelous Vourlidas (JHUAPL)	13 observatories
Ground- based Geospace observations	Provide ionospheric and mesospheric observations on the geospace response to solar inputs		6 observatories
Space observations	Provide X-rays, EUV and magnetic field data at the base of the corona	Harry Warren (NRL)	9 missions
Modeling	Provide predictions of the S/C magnetic connectivity to the solar surface	Pete Riley (PSI) Nick Arge (GSFC)	6 models
Data management	Data management through the WHPI infrastructure	Barbara Thompson (GSFC)	Data distribution

Observatory	Location/Time	Observations	POC
Mauna Loa Solar Observatory (MLSO)	Big Island of Hawaii, USA 19.5°N 155.6°W Daily (1700- 0200UT)	 White light polarization brightness (pB) Coronal electron densities 15s cadence 	Joan Burkepile
Big Bear Solar Observatory (BBSO)	California, USA Daily	Imaging spectroscopy and polarimetry0.1" resolution	Wedna Cao Haimin Wang
Dunn Solar Telescope	New Mexico, USA Jan 15-31 (1500-1700UT)	 Imaging and spectroscopy at multiple wavelengths IR spectro-polarimetry 	Damian Christian
Sayan Solar Obbservatory	Russia 51.6°N 108°E Daily	 Spectrograms and vector magnetograms Coronal obbservations 	Misha Demidov
Baikal Astrophysical Observatory	Russia 54.8°N 105°E Daily	Call KMagnetic Field	Misha Demidov
Kislovodsk Observatory	Russia 43.7°N 42.3°E	Full-disk Call K and Halpha (1m cadence)Photospheric magnetograms	Andrey Tlatov

Observatory	Location/Time	Observations	POC
Fuxian Solar Observatory 1m NVST telescope	China 24.6°N 103°E 0100-0800UT	 High-res 0.3" Halpha images with 11s cadence High-res ~0.1" (after reconstruction) images in the TiO band with 30s cadence 	Zhi Xu
Huairou Solar Observing Station (HSOS)	China 40.4°N 116.6°E 0030-0830UT	 Halpha Photospheric vector magnetic fields Chromospheric LOS magnetic fields 	Xianyong Bai
ONSET Telescope	China		Pengfei Chen
Istituto Ricerche Solari Locarno (IRSOL)	Locarno, Switzerland 46.2°N 8.8°E	 High-precision polarimetry in the Cal 422.7 nm limb (both limb and disk) Other possible lines include: Na I D1 and D2, He D3, H-alpha, and a C2 molecular band 	Renzo Ramelli Michele Bianda
Kanzelhöhe Observatory	Austria 46.7°N 13.9°E Daily	 Full-disk images in Halpha, Call K, and white light 10 images/minute (4 images/s in flare mode) 	Werner Pötzi
Hvar Observatory	Zagreb, Croatia 43.2°N 16.5°E 0600-1300UT	 Halpha and white light high cadence 2s images FOV 7 and 11 arcmin, 1" spatial resolution 	Jasa Calogovic

Observatory	Location/Time	Observations	РОС
Astronomical Observatory of Rome (PSPT)	Monte Porzio Catone, Rome, Italy	 Full-disk Call K, G-band, res and blue cont. ~2" resolution, 0.1% pixel-to-pixel precision 	Ilaria Ermolli
Catania Solar Observatory	Catania, Sicily, Italy 37.5°N 15.1°E	 Full-disk images in Halpha and cont at 656nm 2" spatial resolution 1m cadence in campaign mode 	Paolo Romano
Pic du Midi	Pyrenees, FR 42.9°N 0.1°E	 Coronagraphic observations in Halpha and Hel, possibly in Fe XII 1074 nm 	Frederic Pitout Arturo Lopez Ariste
Meudon Observatory	France 48.8°N 2.3°E Daily	• Full disk Halpha	Jean-Marie Malherbe
NSO/GONG Netword	Multiple locations ~90% duty cycle	 High-sensitivity magnetograms, velocity and intensity images at 1m cadence Near-real-time seismic images of the farside Halpha images at 20s cadence 	Alexei Pevtsov
Mitaka Observatory	Japan	 Full-disk Halpha, G-band, Call K, cont. Halpha velocity maps Full-disk magnetograms in He 10830Å, Si 10827Å, and Fe 15648Å 	Yoichiro Hanaoka

Observatory	Location/Time	Observations	POC
Hida Observatory	Japan	Full-disk Halpha images	Kiyoshi Ichimoto
Félix Aguilar Observatory	Argentina 31.8°S 69.3°W	 Full-disk H-alpha center line with a 1m cadence 30 THz camera (70% of the disk) with 1s cadence 	Carlos Francile
Latin America Giant Observaory (LAGO)/NEWRUS	Marambio, Antartica 64°S 57°W (etc)	• Cosmic rays 2-100 GeV	Sergio Dasso
Crimean Astrophysical Observatory (CrAO)	Crimea	Monochromatic and spectral images	Valentina Abramenko

PSP E7: Ground-Based Radio Solar Observatories

Observatory	Location/Time	Observations	POC
Arecibo			Mike Sulzer Msulzer@naic.edu
Expanded Owens Walley Solar Array (EOVSA)	California, USA Daily (1600- 2400UT)	 Microwave spectra and imaging 1-18GHz Full-disk images 1/day at 6 frequency bands Full-Sun-integrated spectrograms, 1s cadence 	Dale Gary Sherry Chhabbra Bin Chen
Very Large Array (VLA)	New Mexico, USA Jan 28, 30, 31 (TBC)	• Imaging at 1-2 GHz & 230-470 MHz	Tim Bastian
	Jan 27	Full-disk mosaic L & S band	Stephen White
Long Wavelength Array (LWA)	New Mexico, USA Jan 27-30 (TBC)	• 20-80 MHz spectroscopy	Stephen White
Nobeyama Radioheliograph	Japan 2300-0600 UT	• Full-disk images at 17 and 34 GHz	Satoshi Masuda
Kislovodsk Observatory	Russia 43.7°N 42.3°E	Radio observations at 3 and 5cm	Andrey Tlatov
MeerKAT	South Africa		Du Toit James Chibueze

PSP E7: Ground-Based Radio Solar Observatories

Observatory	Location/Time	Observations	РОС
Siberian Radioheliograph	Siberia, Russia 51.8°N 103°E Daily 0200- 0800UT	• Full-disk images at 16 or 32 bands in 4-8 GHz range	Maria Globa Alexander Altyntsev Sergey Lesovoi
Huairou Solar Radio Spectrograph	China		Baolin Tan
Low-Frequency Array (LOFAR)	Netherlands	 Solar imaging range 20-70MHz High-res solar dynamic spectra 10-77MHz and 110-190MHz 	Richard Fallows Pietro Zucca
Murchison Widefield Array	Austrailia	 Imaging spectroscopy at 24 bands 80-240 MHz 0.5s and 40 kHz resolution 	Divya Oberoi
Sardinia Radio Telescope (SRT)	San Basilio, Sardinia, Italy 39.5°N 9.2°E Jan 28 0800- 1500UT	 Full-disk solar images at 18 and 26 GHz ~50" arcsec angular res 	Alberto Pellizzoni
Nançay Decameter Array	France 47.4°N 2.2°E Daily	 10-100 MHz daily spectrograms of the Sun and Jupiter at various cadences (<1s) and spectral resolutions (<175 kHz) 	Sophie Masson Laurent Lamy

PSP E7: Ground-based Geospace Observatories

Observatory/Satellite Mission	Observing Window	Observations	РОС
PFISR	Continuous (low duty cycle)	 IPY27 (1% duty cycle): 4 beams, long pulse (F-region) and alternating codes (E-region) Themis36: 23 beams, long pulse (F-region) and alternating codes (E-region) MSWinds26 (For ELFIN): 4 beams, barker codes (D-region), alternating codes (E-region), and long pulse (F-region) WorldDay35: 11 beams, long pulse (F-region) and alternating codes (E-region) Calendar: data.amisr.com/database/61/sched/2020/01/ 	Roger Varney Roger.Varney@sri.com
RISR-N	Continuous (medium duty cycle) Jan 13 - Jan 17 (Themis/MMS) Jan 15 - Feb 15 (10-day SSW World Day on alert)	 LowDuty2 (3.5% duty cycle): 5 beams long pulse (F-region) and 3 beams of alternating code (E-region) imaginglpReduced (for MMS): 19 beams, long pulse (F-region imaging) WorldDay68m (for SSW WD): 10 beams, long pulse (F-region) and alternating codes (E-region) Calendar: data.amisr.com/database/91/sched/2020/01/ 	Roger Varney Roger.Varney@sri.com

PSP E7: Ground-based Geospace Observatories

Observatory/Satellite Mission	Observing Window	Observations	РОС
Millstone Hill		Wide field ionospheric full altitude profiles	Phil Erickson pje@mit.edu
Jicamarca	Jan 15 – Feb 15	 ISR observations for 10 days during the observing window to measure F-region plasma densities, temperatures and drifts. 	Marco Milla Marco.Milla@jro.igp.gob.pe
RISR-C	Jan 13 – Jan 17 (Themis/MMS) Jan 15 – Feb 15 (10-day SSW World Day on alert)	 imaginglpReduced (for MMS): 19 beams, long pulse (F-region imaging) WorldDay68m (for SSW WD): 10 beams, long pulse (F-region) and alternating codes (E-region) Calendar: data.amisr.com/database/91/sched/2020/01/ 	Rob Gillies Rgillies@ucalgary.ca
Ground Based Magnetometers (USGS, SuperMag, etc)		 Ground-based magnetic field measurements 	

PSP E7: Space-bases Missions

Observatory/Satellite Mission	Observing Window	Observations	РОС
SDO		EUV full-disk images, AIA images	Dean Pesnell Barbara Thompson
Hinode		X-ray images, Magnetograms, and Ca II images	Harry Warren
IRIS		Multi-wavelength spectroscopy and imaging	Bart De Pontieu
STEREO		Full disk EUV images and plasma measurements	Angelos Vourlidas
NuSTAR		X-ray images	Lindsay Glesener Jessie Duncan
ARTEMIS		Field and plasma measurmenets	Vassilis Angelopoulos
COSMIC		Ionospheric reaction to solar input	Charles Lin Charles@mail.ncku.edu.tw
MMS	Jan 25 th – Feb 8th	 Extended science region of interest in solar wind to collect fast survey mode data 4 sec thermal ion/e- (FPI), 16 vec/s B (FGM), 64 vec/s E (EDP), 10 sec thermal ion composition (HPCA) 	Rick Wilder Frederick.Wilder@lasp.Colorado.edu Tai Phan phan@ssl.Berkeley.edu

PSP E7: Space-bases Missions

Observatory/Satellite Mission	Observing Window	Observations	POC
TIMED			Martin Mlynczak M.G.Mlynczak@nasa.gov
ICON	Continuous, excluding brief calibration activities	 Thermospheric winds, lower thermosphere temperatures, O+ density day and night, O/N2 ratio daytime, O+ drift in situ. 	Thomas Immel Immel@ssl.berkeley.edu

PSP Encounter 11 Science Opportunities

Encounter 11:

- Can be seen from Earth
- Provides opportunities for synergies with ground-based observatories and space missions
- PSP will spend significant time in the sub-Alfvenic solar wind
- Solar activity is picking up

We are soliciting support for encounter 11 from as many ground-based observatories and spaceborn missions as possible

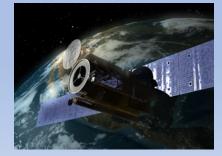
Parker Solar Probe Scholars An Open Forum to Promote Early-Career Scientists & Diversity in Heliophysics • Third Meeting: Nov. 9-10, 2021

- Open to all helio-scientists worldwide
- 350+ scientists joined the PSP Scholars

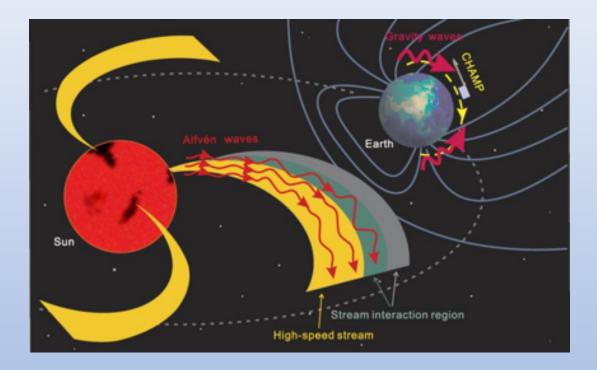
- Presenters at the PSP-Scholars second meeting
- Symbols show affiliations of PSP Scholars members

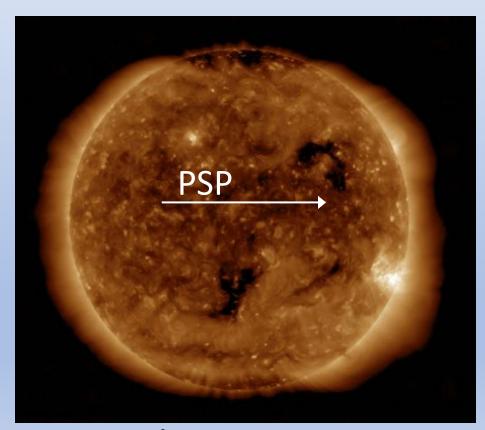
Parker Two Conference June 21-24, 2022 DC area – Venue will be announced soon

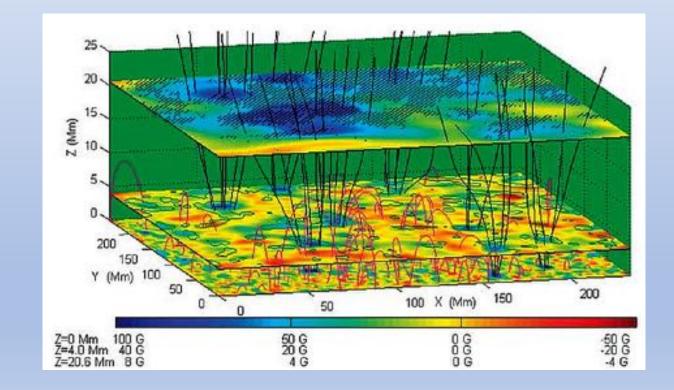
PARKER SOLAR PROBE


A MISSION TO TOUCH THE SUN

PSPs 8th perihelion: Cororonal holes, open magnetic funnels, and the origin of the solar wind




Effects of high-speed solar wind streams

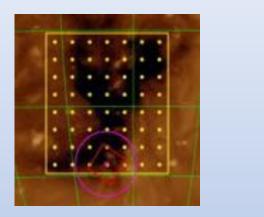

- HSS rarefaction: preconditions interplanetary space for subsequent CMEs
- Stream Interaction region: Energetic particle acceleration
- Interaction with Earth's magnetosphere: geomagnetic storms and substorms

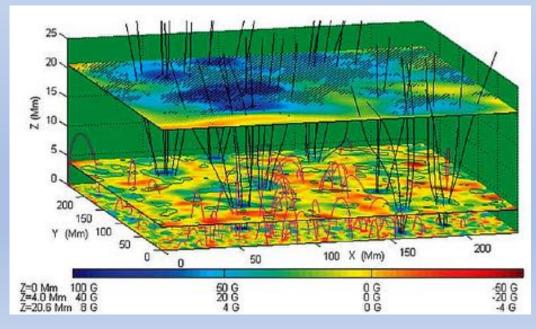
We need to understand the origin and properties of HSSs close to the Sun to be able to predict their propagation

Coronal holes are built up from open magnetic funnels. <u>Main focus:</u> Where are the open magnetic funnels rooted, how do they determine the properties of coronal holes, and how do their properties affect the solar wind acceleration?

SDO/AIA 193 Å, 04/30/2021

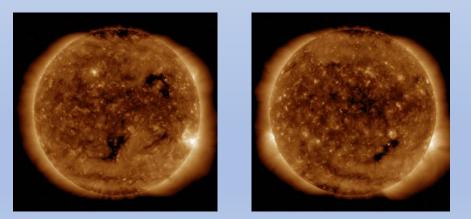
Instruments involved


- Visible regime Photosphere and chromosphere GREGOR, DST, SST, GST
- EUV regime Chromosphere, low corona IRIS, Hinode, SDO
- Radio regime


from the chromosphere to the high corona LOFAR, EOVSA, Sibirian Radioheliograph

• PSP

Solar wind at 15-70 solar radii


- Earth was aligned with the coronal hole
- > 40 scientists involved!

What else happened during PSPs 8th perihelion?

- Features seen by PSP
- Magnetic reconfiguration of the corona
- Several small Type III radio bursts
- C8 Flare + Type III radio burst on May 8th

SDO/AIA 193 Å, 04/30/2021 + 05/02/2021

Everybody who wants to join is welcome!