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Continuous observations of space weather conditions at Mars
spans nearly two solar cycles.
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Solar Energetic Particles have been measured
continuously at Mars since 1997.
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MGS “measured” solar wind pressure and IMF direction upstream from
the bowshock, even though its orbit didn’t go outside of the bowshock
and it wasn’t instrumented to measure ions.

Mars Global Surveyor

o)
o

o
o

'.-_IIIIIIIII

o)
o

EUV Proxy
Scaled from 1 AU

=
-||i;111|111|111-

Pgy Proxy
- 2 N NW
oMo u|mo O




MAVEN have been making a full complement of space weather
observations since the end of the maximum phase of Solar Cycle 24.
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Impacts and Effects of the
Space Environment at Mars




Mars has an induced magnetosphere perturbed by strong crustal
magnetic fields and an ionospheric reservoir. The planet is only weakly
shielded from impacts by solar and interplanetary disturbances.
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During CME and SIR/CIR events, the induced magnetosphere is

compressed.

Mars Express
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Discrete aurora in Martian crustal magnetic fields appear to be more
iIntense and more likely during SEP events.

Mars Express

Mars Global Surveyor
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Energetic electrons triggered global “diffuse aurora™ around Mars
during high-flux SEP event periods.
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The Martian ionosphere and thermosphere respond to

energetic photons from solar flare events.
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Atmospheric escape rate at Mars can increase by an
order of magnitude during extreme solar storm events.

Typical Conditions Extreme Conditions




Mars Express observed increases in ion escape during CME
and CIR/SIRs events.
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MAVEN observed increases in the ion and neutral escape rates
during a CME event.
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Impacts and Effects of the
Space Environment at Venus




There have been fewer observations of the space environment around
Venus, but recent mission flybys* are providing opportunities to update
and expand our knowledge on this topic.
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Pioneer Venus Orbiter and Venus Express succeeded in measuring many
basic properties of an induced magnetosphere, and the effects of the
interplanetary conditions on Venus’ ionosphere and atmosphere escape.
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Pioneer Venus Orbiter radio occultation and in-situ measurements showed the
lonosphere’s response to increasing solar wind pressure — the lowering of the
lonopause and ionosphere magnetization. Venus Express ionospheric measurements
also exhibited these responses.
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Pioneer Venus Orbiter suprathermal energy ion observations first suggested dynamic
pressure enhancements from CMEs significantly increased escape fluxes of O+.
Venus Express made similar observations of escaping fluxes during high dynamic
pressure event periods.
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A high solar wind dynamic pressure-related “diffuse” nightside UV
aurora was detected by Pioneer Venus Orbiter. The UV aurora is
produced by electron precipitation (Fox and Stewart, 1991).

Orbit

.

Orbit 1298 Orbit 1301

304 1

1303

214

Nightside views of the Venus 130.4 nm aurora observed by the PVO UVS
instrument showed a brightness response to a solar wind enhancement.



Venus auroral green line emissions have also been detected from
terrestrial ground-based observations and are associated with solar
eruptive events (flares, CMEs). Weaker emissions have also been
detected, associated with more quiescent solar wind conditions.
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Work is ongoing by Kovac et al.* to investigate the cause(s) of emissions during
calm solar wind periods at Venus, taking advantage of the Parker Solar Probe
Venus Flyby observations together with WSA solar wind modeling results.
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Impacts and Effects of the
Space Environment at Mercury




There have been even fewer observations around Mercury — mainly from
the MESSENGER mission, but BepiColombo will provide opportunities to
comprehensively study the space environment around this planet.
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Intrinsic magnetosphere experiences extreme solar wind
forcing due to Mercury’s proximity to the Sun.

. MERCURY



Induction currents can increase Mercury’s total magnetic
moment by up to ~25%.
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Magnetopause reconnection occurs at high rates to erode the
dayside magnetosphere of Mercury.

Slavin et al. (2019)
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A tug-of-war exists between induction effects and magnetic reconnection.
For the most extreme CME events, the dayside magnetosphere disappears.
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For the most extreme CME events, the dayside magnetosphere disappears.
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During Mercury’'s disappearing dayside events, the planetary surface is
exposed to the solar wind and is no longer protected by the global
planetary magnetic field. This creates a scenario that is similar to Mars.
Mercury can become Mars-like during extreme solar events!

Mercury Mars
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This very qu:ck overview didn’t include a discussion about how the outer planets

iInteract with the interplanetary environment, and only a small snippet was shown
regarding how the inner planets respond to active and quiescent solar conditions.

Bottom line: Solar eruptive events and quiescent conditions impact a planetary system
in different and sometimes similar ways, depending whether the planet has an intrinsic
vs induced magnetosphere and the characteristics of the planet’s ionosphere and
upper atmosphere.



Observations from planetary missions contribute to a larger heliospheric dataset!



Measurements from planetary missions have been used to study the

influence and impact by a common space weather event (solar flares,

CMEs, SEPs) observed at Earth and/or STEREO-A. Example shown
below is for the September 2017 event period.
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Observations at Mercury, Earth, and Mars have been used to
characterize the evolution of ICMEs and the related Forbush Decreases
(Fds) in the inner heliosphere.

Winslow et al. (2018) found that:

» Fds are steeper, deeper, and
of shorter duration closer to
the Sun.

* Fd size strongly dependent on
ICME B.

» Hint of possible exponential
drop-off of Fd size with radial
distance from the Sun (see
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Observations from planetary missions have been used to better constrain 3D
solar wind models (below) and SEP models (e.g., Luhmann et al., 2018).
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