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Objective 1: Understand how coronal structures become
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Objective 2: Understand the dynamic evolution of transient

structures in the young solar wind
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How do coronal mass ejections (CMEs) propagate

and evolve in the solar wind?

How do quasi-stationary corotating interaction

regions (CIRs) form and evolve?

How do shocks form and interact with the solar
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CME-driven shock
is the “gun”

Seed particles
are the “bullets”

wind across spatial scales?

Moses et al. 2015; Vourlidas et al.,

CMEs and Shocks (Interactions with WG2-A):

CME structure, CME-shock Identification,
Quantitative Image Analyses, Shock shape,
properties

Dave Webb, Jackie Davies, Glenn Laurent,
Barbara Thompson

Shock Evolution from ~5-10 au and beyond

Solar Wind variability, CME shock
evolution in coronal and heliospheric
imagery, PSP, SolO

Nicholeen Viall, Alexis Rouillard, Dusan
Odstreil

Shock Properties as function of time, radial
distance, and azimuth

Shock Analyses, Shock Physics, turbulence,
small-scale dynamics, Space Weather

Applications, Comparisons with Radio
data, PSP, SolO

William Matthaeus, Huw Morgan, Iver
Cairns, Vic Pizzo

SEP acceleration:

Relationship between shock shape,
Properties and upstream turbulence and
observations at PSP, SolO, and 1 AU

Mihir Desai, William Matthaeus, Iver
Cairns, Alexis Rouillard

PUNCH connects CME & shock formation, 3D structure, evolution, SEP acceleration and Space Weather

WG2C Goals: Mihir Desai

Use/Disclaimer Statement if applicable

2



ldentify, Track & Model CMEs, Shocks, and their shapes
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Combined with numerical modelling of the background corona and

shock waves:
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PUNCH will provide critical data to improve all these modelling steps!
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heliosphere we can derive the time-evolving 3-D properties of coronal
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To connect coronal shocks with
in situ measurements of SEPs we
model the interplanetary
magnetic field:



Linky-ray sources, CMEs, Shocks & SEPs
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PUNCH in concert with
improved modeling will

—p link CMEs, shocks and
SEPslICritical for Space
Weather models and
predictions
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PUNCH Measurements & Performance

Q2C: How do shocks form and interact with the solar wind
across spatial scales?

Formation, cross-scale Distortion (e.g., crinkles, bends)
spatial structure, and and brightness jump of shock
shock parameter (Mach fronts across a wide field of view
ratio) of forward shocks via 3D polarization analysis,
driven by strong CMEs or | image deblurring,autocorrelation
CIRs. and structure functions.

Connection between shock formation, structure, evolution and SEPs and Space Weather

WG2C Goals: Mihir Desai Use/Disclaimer Statement if applicable 6



PUNCH Analyses Techniques

3D polarization analysis, auto-correlation & structure functions, and co-added image
deblurring. Global heliospheric models are used for context and event analysis.

D: Kinematic Tomography Yields Detailed 3D Information (2A, 2B, 2C) C: Co-Added Image Deblurring Preserves Spatial Resolution (1B, 2A, 2C) |

Large scale inversions from IPS  Fine scale inversions from SMEI reveal Long or summed exposures PUNCH deblurring
show heliospheric evolution substructure features in a micro-stream blur CMEs and wind features preserves CME structure
associated with a coronal jet
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PUNCH rapid cadence enables co-added image deblurring, permitting high resolution,
deep fieldimaging. This proven technique (DeForest et al 2016) enables deep imaging
of detailed structure in the solar wind and transients (Questions 1A, 2A, 2B, 2C).

PUNCH uses proven tomographic techniques to determine global and fine-scale
structure via kinematic constraints, as demonstrated here using published data from
IPS and SMEI. With >30x improvements in SNR and two polarization channels, PUNCH
enables far more detailed, precise tomography of ejecta and the solar wind.

Connection between shock formation, structure, evolution and SEPs and Space Weather
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?g% Tools and Observations for WG2C

» Synthetic Data (already developed)
= Understand the physics and limitations of CME/CIR models
= Generate synthetic shocks that PUNCH will detect

= Model radial falloff in density, relation to coronal holes, streamers, and 3D
Reconstruction

* Shock expansion speed

* Density maps combined with background models to predict transport of
strong compressions

* PUNCH Observations
= Morphology along the front and its evolution.
= Excess density maps and their evolution

Connection between shock formation, structure, evolution and SEPs and Space Weather
WG2C Goals: Mihir Desai Use/Disclaimer Statement if applicable 8



WG

* Have well-vetted tools capable of
= |dentifying CMEs, CIRs, and shocks in PUNCH data

2€ Goals for PUNCH e N initafg s the

Open field lines

Energy Shock

Release

wn
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Quant!fylng Shock Properties, Structure & Image X
Evolution . 3
_ credit: 5
* Robin, Laurent, Jackson adapted
= Modeling and Mapping to PSP, Solar Orbiter from A R R
. ilard. Odstreil Matth Accelerated ions—7 T\ X
Rouillara, stret, Viatthaeus Moses et CMF-driven shock Seed particles
= Relating to turbulence ahead of shock al. 2015 is the “gun” are the “bullets”
Matthaeus, Cairf v orphological evolution of density | Measure, for the first time in high
structures associated with hydrod- resolution, shock evolution in the
ynamic and turbulent instabilities in | solar wind. Identify role of large-
CME fronts and CIRs; association scale turbulence to SEP pro-
(or lack) of instability onset and duction, and importance of spatial
shock "crinkles" with SEPs. instabilities to shock evolution.
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@ Ongoing and Future work

* Develop and refine methods for generating reliable CME shock data and their
evolution as a function of heliospheric location

Generate synthetic CME-shock data and match to observed data -- e.g.,
STEREO-HI shock observations

Predict evolution of key parameters like density, velocity etc. depending on
where the shock is observed

Predict what PSP, ACE, STEREO, Solar Orbiter should see
Compare and Refine Models

Include shock-turbulence interactions
Combine with SEP models

Implications for in-situ SEPs

Connection between shock formation, structure, evolution and SEPs and Space Weather
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PUNCH data
data flow
dataflow \ WG2B CIRs
P . 3 extract R
<" WG2A: CMES 1 properties
extract CME shock
properties
data flow
i WG2C: shocks

get SEP modelers r & Sey,

to predict SH° properties \&),77690,{_
at various locations Oo'@/

S

data row*

STEREOA . ACEWind
~1 AU ~1AU
: MAVEN
(Mars orbit) BeplCoI ombo

Connection between shock formatlon structure evolution and SEPs and Team Roles
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Scientist

Role

Mihir WG leader; Shock structure; SEP
Desai acceleration
Sarah Working Group coordination
Gibson
Glenn Quantitative image analysis
Laurent
William Turbulence theory and
Matthaeu | interpretation; PSP/ISOIS liaison; in-
S situ comparison
Dusan Heliospheric modeling (ENLIL)
Odstrecil
Barbara Shock structure; image analysis
Thompso
n
Nicholeen | Analyze and interpret PUNCH data
Viall on solar wind variability
Vic Pizzo Shock analysis; Space weather
applications
Iver Shock physics and CME; solar wind
Cairns structure and turbulence;
Coordination with radio
observations
Jackie CME-shock interaction analysis
Davies
Huw Analysis of small-scale dynamics
Morgan
Alexis Analysis of solar wind variability and
Rouillard | shocks in coronal and heliospheric

imagery




Thank You & Questions!

Connection between shock formation, structure, evolution and SEPs and Space Weather
WG2C Goals: Mihir Desai Use/Disclaimer Statement if applicable 12



Early Shock Observations

Vourlidas, A., et al.: 2003, Direct
Detection of Coronal Mass Ejection-
Associated Shock in Large Angle and
Spectrometric Coronagraph Experiment
White-Light Images ApJ 598, 1392-1402

Sheeley, N.R., Hakala, W.N., and Wang, Y.-M.: 2000,
Detection of coronal mass ejection associated shock waves
in the outer corona, ApJ 105, 5081-5092

Slide Courtesy: Robin Colaninno
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How do shocks form and interact with the solar wind
across spatial scales?

Simulations suggest that CMEs are
strongly affected by turbulent
instabilities across their shocks.

Corrugations of shock fronts may be
responsible for the acceleration of
solar energetic particles (SEPs) and
type Il radio bursts.

The current generation of
coronagraphs and heliospheric
imagers are not designed to capture
shock evolution, interactions and
possible instabilities, due to TADIOOT7-PUNCH 0 20 40 60 80 100
sensitivity and motion blur effects.

Odstrcil, 2011
PUNCH observes global shock structure and resolves shock-turbulence interactions.
Use/Disclaimer Statement if applicable 14



pumsn 5. Shock Dynamics

|

s

Science Activities for Baseline Closure on Question 2C

Develop a data-driven, cross-scale
picture of shock formation and
turbulence using spatial irregularities

EHﬂcﬁlrfgﬂ‘fW&? GEEESIRpicture of

shock formation and shock turbulence
interaction, and CME/CIR interactions. This
enables breakthrough science in a previously
inaccessible observational regime, exploring
the role of solar wind variability on
interplanetary shock behavior, with
implications for SEP acceleration and radio
emission.

Tappin and Simnett, 1997
PUNCH is ideally suited for cross-scale analysis, with global field of view and high spatial/temporal resolution.
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How do shocks form and interact
with the solar wind across spatial
scales?

PUNCH provides a cross-scale
picture of shock formation and
shock turbulence interaction, and
CME/CIR interactions. This enables
breakthrough science in a
previously inaccessible
observational regime, exploring
the role of solar wind variability on
interplanetary shock behavior,
with implications for SEP
acceleration and radio emission.
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Image credit: adapted from Moses et al. 2015

Connection between shock formation, structure, evolution and SEPs and Space Weather
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