Polarimeter to Unify the Corona and Heliosphere

PUNCH-2 9-August-2021 Teleconference

Working Group 2A overview "How Do CMEs Propagate and Evolve in the Solar Wind?"

Group leaders: Anna Malanushenko, David Webb

• Coronal mass ejections \rightarrow key link between solar activity & IP disturbances

• The main question:

How do CMEs propagate and evolve in the solar wind?

• More specifically,

Understand the 3-D structure of CMEs, track this structure, and establish the chirality/orientation of CME flux ropes

The main question: How do CMEs propagate and evolve in the solar wind?

Two specific goals and the tools needed to address them:

- Understand the 3-D structure of CMEs and track this structure
- Establish the chirality/orientation of CME flux rope structure

Techniques needed:

- Polarization 3-D localization and chirality determination (Gibson, De Koning, Pizzo, DeForest)
- Tracking methods from origin/low corona to 1 AU (Webb, Davies, Harrison, Burkepile, Biesecker)
- Model development ENLIL (Odstrcil), FORWARD (Gibson), Gamera (Provornikova)
- Tomographic and other visualization techniques (Jackson, Morgan)
- Image interpretation, connection between corona and heliosphere (West, Bisi, Howard)
- CME structure and flow mapping (Thompson), solar wind connections (Elliott)
- Synthetic data from the models (Thernisien, Gibson, Malanushenko, Odstrcil)
- Space weather applications (Biesecker, Pizzo)
- Synergies with other ground-based and space-based instruments (Burkepile, Bisi, Howard, Elliott, Rouillard)

- The main question: *How do CMEs propagate and evolve in the solar wind?*
- More specifically: Understand the 3-D structure of CMEs, track this structure, and establish the chirality/orientation of CME flux rope
- Group leaders: Anna Malanushenko, Dave Webb
- Group members:

Doug Biesecker	Sarah Gibson	Elena Provornikova
Mario Bisi	Russ Howard	Alexis Rouillard
Joan Burkepile	Curt de Koning	Arnaud Thernesien
Jackie Davis	Dusan Odstrcil	Barbara Thompson
Heather Elliott	Vic Pizzo	Matthew West

Tasks of Working Groups 2A, 2B, and 2C:

IIDGH

Synthetic data: "The CME Challenge"

to sign up: email me at anny@ucar.edu

Goals:

- prepare for PUNCH launch
- develop and improve CME analysis methods
- do great science!

The data:

- Gamera MHD simulations
- standard FITS format
- tB, pB, PUNCH FOV and PUNCH projection^{*}

*note: PUNCH data will be in <u>azimuthal equidistant</u> projection, as opposed to, say, <u>helioprojective-cartesian</u>, which is commonly used near the Sun

Synthetic data: "The CME Challenge"

to sign up: email me at anny@ucar.edu

The setup:

 <u>download</u> "PUNCH" data for three simulated events: CME0 ("reference"), CME1, CME2 ("challenge")

download from Google docs

Synthetic data: "The CME Challenge"

The setup:

- <u>download</u> "PUNCH" data for three simulated events: CME0 ("reference"), CME1, CME2 ("challenge")
- <u>determine</u> properties of these CMEs
- <u>proof-check</u> yourself: properties of CME0 ("reference case") are given *a priori*
- <u>submit</u> your answers for CME1, CME2 (email me ☺)
- <u>find out</u> the "correct answer"
 (published online 2 months from now)

to sign up: email me at anny@ucar.edu

Synthetic data: "The CME Challenge"

to sign up: email me at anny@ucar.edu

ground truth is fully known

but, what you get is synthetic tB and pB data; for CMEO, "reference", you also get the answers

Synthetic data: "The CME Challenge"

to sign up: email me at anny@ucar.edu

What properties to determine?

- Launch location
- Trajectory, velocity, acceleration
- Angular size, shape
- Chirality
- Mass
- ...what else can you determine from these data? Let me know!

Synthetic data: "The CME Challenge"

to sign up: email me at anny@ucar.edu

