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Summary: The rapid expansion of genome sequence data is increasing the discovery of 
functionally unannotated protein-coding genes across all domains of life. Annotating these 
genes with reliable functional information is necessary to define the full biochemical space 
accessed by nature and to understand how taxonomically diverse organisms function and 
evolve. Recent advances in comparative statistical genomics, machine learning, cell biology, 
microscopy, genetics, and high-throughput biochemistry suggest new potential for the 
characterization of proteins and domains of unknown function (so-called PUFs and DUFs). By 
coupling interdisciplinary teams of informaticians, cell biologists, geneticists, and biochemists 
with well-maintained, open access databases of function and phenotype, it should be possible 
to dramatically accelerate annotation of the so-called “dark proteome”.  
 
Introduction and Statement of Problem: 

In the last 20 years, our capacity to sequence genomes has grown exponentially. At present, 
NCBI catalogs well over 200,000 genomes, assembled at varying levels of completeness 
(http://www.ncbi.nlm.nih.gov/genome/browse/). Despite this rich catalog of genetic information,  
the function of the vast majority of the genes contained in a species remain unknown. Recent 
estimates suggest that depending on the organism, anywhere from 20-60% of genes are 
unannotated (1,2). These numbers do not fully account for the potential for incomplete or mis-
annotated genes. Further, this challenge is dramatically higher  for Intrinsically Disordered 
Proteins -- estimated to comprise 15-40% of human proteome (3) --  as variations in sequence 
length and composition often preclude alignment, and the lack of a folded domains prohibits the 
use of structural information.  
 
Providing accurate functional and phenotypic information for individual proteins is nevertheless 
critical to discover new chemistry and cellular processes. It is also fundamental o understand 
the mapping between genotype and phenotype. Traditionally, protein function is defined through 
a one-gene-at-a-time approach requiring years of intensive research to associate a biochemical, 
cellular, and organismal role for a protein. Even with intense investigation, consensus may not 
be reached on an individual protein’s function. Computational approaches aim to expand 
annotation capacity, but simple homology-based predictions often provide limited or misleading 
insights into function. Therefore, it is imperative to develop technologies or approaches to 
rapidly determine the biochemical and biological functions of functionally unknown genes. 
 
We describe recent advances and challenges in function annotation and lay out a potential 
pipeline for prioritizing and characterizing PUFs and DUFs. This process demands 
collaborations between computational biologists and experimentalists from diverse biological 
disciplines. Such interdisciplinary collaboration is necessary to: 1) maximally leverage the 
experimental data to develop and refine computational tools, 2) create high-dimensional 
annotations that describe multiple aspects of protein function and 2) computationally extend 
annotations to experimentally inaccessible systems. Importantly, this approach is necessarily 



species agnostic, but will provide cascading benefits as more genomes are sequenced and 
annotated.  
 
Key Advances and Challenges:  

Recent years have brought a host of advances in both computational and experimental 
approaches to the annotation of function. Here we highlight several that seem exceptionally 
promising and discuss present barriers and challenges.  
 
Informatics: The rapid increase in genomic “big data” provides rich opportunities for prediction 
of function by statistically-driven evolutionary analyses and machine learning.  Signals of 
sequence homology, conserved chromosomal proximity (e.g. gene neighborhoods, synteny), 
the presence/absence of genes (e.g. phylogenetic profiling), and protein sequence co-evolution 
(e.g. evolutionary rate correlations, mirrortree) can all provide predictions of function and 
functional interactions (4–12). As more protein structural data becomes available, homology-
based structural approaches (e.g. HHPRED) will become increasingly powerful (13). Advances 
in machine learning are also dramatically increasing the potential of computational annotation 
(14). It is further interesting to consider the possibility of functional annotations for units larger 
than a single gene: co-evolutionary analyses suggest the possibility that cellular systems might 
be decomposed into small multi-gene functional units (6,15). In this sense, we might recognize 
or annotate a small group of genes as a physical complex or the unit underlying a particular 
phenotypic trait.  
 
However, these approaches suffer from a few limitations. First, gold-standard training and test 
set data are often limited. Expanding the availability of high-quality experimental functional 
annotations is important to refining and validating the performance of many computational 
algorithms. For example, the community-driven CAFA challenge (Critical Assessment of 
Functional Annotation), has been valuable in benchmarking progress and identifying directions 
requiring further work (16). Increasing the annotations available to CAFA would further 
accelerate progress. Secondly, computational annotation methods are typically used by a 
limited set of expert practitioners, and analysis results (and code) are sometimes inaccessible or 
restricted in scope.  It is often difficult for experimental biologists to know which tools are the 
most cutting-edge and reliable, or assess which would be the best for their application. In this 
direction, a combination of educational workshops, open-access initiatives, web-based 
annotation tools, and collaborative, review-like publications are necessary to broaden and 
democratize usage.  
 

Genetics: One standard approach to assessing function is creating genetic knockouts or 
knockdowns, and observing the resulting functional phenotype. For example, recent work in 
bacteria used transposon-based mutagenesis and high-throughput measurements of growth 
rate to measure fitness effects for more than 10,000 genes in 32 diverse bacterial species (17). 
In these types of studies, characterizing phenotypes across many environments or growth 
conditions is important to expose as many functional roles as possible (17–20). To this end, 
recent advances in multiplexed continuous culture devices provide one avenue to broadly 
sample well-controlled environments for bacteria and yeast (21,22).  



 
Increasing the throughput of “knock-in” or gene complementation studies is another interesting 
possibility: assessing the capacity of DUFs and PUFs to rescue loss-of-function knock-out 
phenotypes in model organisms presents an additional avenue to rich functional information  
(23,24). Existing gene knockout collections in several model organisms (E. coli, yeast, 
Drosophila, Arabidopsis, and mammalian cell culture lines) provide a solid foundational toolkit 
for these sort of genetic studies, while new CRISPR-based tools (allowing both loss-of-function 
and gain-of-function gene expression studies) enhance model system genetic analysis and 
provide powerful tools for generating genetic perturbations in non-model organisms (25).  
 
Nonetheless, genetic manipulation in most cell or organism-level systems is arduous. Model 
species contain only a small subset of the diverse protein coding sequences that have been 
discovered through genome sequencing. Unknown function genes may be identified in 
organisms that cannot be grown in a laboratory, making these species inaccessible for genetic 
manipulation. Moreover, genetic redundancy within individual species can require whole gene 
families to be mutated before any discernible phenotype can be observed. Technologies that 
enable large scale, site-directed mutagenesis in a diversity of species are necessary to 
characterize unknown function genes at scale. Importantly, these genetic tools must be coupled 
with high-throughput, quantitative measurements of phenotype. 
 
Biochemistry: Annotation of biochemical function -- including the reactions catalyzed, 
associated catalytic parameters, and knowledge of substrate specificity or ligand binding 
affinities -- is fundamental to identifying new chemistry, defining metabolic pathways, and 
discovering drug targets. Nonetheless, expressing, purifying and biochemically characterizing 
individual proteins is a labor-intensive and typically low-throughput process.  Combining 
comparative genomics, structural modeling and high-throughput biochemical assays suggests a 
path towards broadly defining enzyme function (26,27), but requires additional scaling to keep 
pace with the expansion in genomic datasets. 
 
Recent advances in microfluidics based assays, which can enable measurements of catalytic 
parameters for tens of thousands of enzyme variants, provide one strategy for rapidly 
characterizing homologs or mutants. In these systems, proteins are often transcribed and 
translated in vitro, and measurements of catalytic activity, binding affinity and substrate 
specificity are collected within isolated microfluidic chambers or droplets (28,29). However, 
these systems are presently limited to relatively well-behaved model enzymes, and typically 
require known fluorescent substrates. Extending the utility of these approaches would broadly 
enable the fields of function annotation and protein engineering. 
 
Moreover, we emphasize that the resulting data should be collected in an accessible public 
database in machine-readable format with appropriate meta-data. The BRENDA database 
(https://www.brenda-enzymes.org/) provides one existing platform for accomplishing this, but 
the data are not easily searched or downloaded in a readily machine-readable format. KEGG 
provides an organized view of metabolic enzymes and pathway structure 



(https://www.genome.jp/kegg/), but does not make biochemical parameters for enzyme 
orthologs readily available.  
 

Imaging: Imaging and analyzing the spatial, intra- and inter-cellular PPI of the “dark matter 
proteome” will be incredibly difficult because of its 1) low numbers, 2) transient nature, 3) poor 
to no evolutionary conservation, 4) lack of whole or regional protein sequence information, 5) 
weak to no PPIs, and 6) detectability (30,31,32) and because all reagents and technologies 
have been developed for highly abundant, well characterized, ordered, strongly interacting, and 
highly detectable proteins (33-36).   

For example, the issues involved in using commercially available antibodies generated for PPI 
studies included, high quality antibodies required for antibody-dependent methodologies and 
workflows may be poorly characterized, may have been developed and used for single event 
detection and analysis, or they are simply unavailable;  similarly, methodologies and workflows 
required to study PPIs are hampered by a lack of controls required  to assure optimization, 
validation, and reproducibility (37-43). 

Although advances in new tools such as CRISPR-mediated gene editing coupled with generic 
fluorescent tag-donor plasmids are very promising for PPI studies, new high throughput tools for 
effective tagging endogenous proteins are needed (44). 

Similarly, academic entrepreneurial microscopists’ development of new optical  and electron 
microscopic imaging reagents and technologies  and using them in combination with common 
and uncommon optical and electron microscopic-based methods and technologies have  
permitted the discovery, study, and quantitative analysis of dark matter proteome PPIs and will 
promote and further efforts to connect genotypes-to-phenotypes and disruptions that often lead 
to cellular dysregulation (45,46).  

However, all combinations of new reagents and technologies with common (e.g., fluorescence 
cross‐correlation spectroscopy and Förster resonance energy transfer [FRET]) and uncommon 
(single-molecule FRET; FRET-fluorescence lifetime imaging microscopy; cytoskeleton-based 
assay for protein-protein interaction; single-molecule protein proximity index; concentric FRET; 
homogeneous time resolved fluorescence; acceptor photo-bleaching FRET, and correlative 
acceptor photo-bleaching FRET) optical and electron microscopic-based methods and 
technologies have pitfalls when used in the search for dark matter proteome PPIs (47-53).  

These methods and technologies 1) are labor intensive; 2) make it difficult to differentiate and 
determine proximity among direct PPIs; 3) are poorly scalable; 4) require many negative 
controls, and 5) intensive optimization and trouble-shooting; and all require better probe design 
for longer acceptor half‐live and lower time‐resolution, as well as smaller size probes (47-53).   

Thus, to advance PPI studies of the dark matter proteome, imaging obstacles must be 
overcome.  A promising direction is the development of correlating FRET-based multiplexed 
techniques that use multiple donors/acceptor pairs and multiple excitation sources to monitor 
multiple events and to permit correlation of multiple in vivo spatiotemporal characteristics of PPI 
between dark matter proteome proteins within intact multicellular organism at multiscale 
resolution (54-58). 

This section is not intended to provide an exhaustive review of peer reviewed literature, relevant 
books, and reports. Rather, it seeks to provide some understanding of and insight into PPI 



studies’ available imaging tools and technologies and their pitfalls and to point to what new 
technologies and tools will advance PPI studies of the dark matter proteome.    
 

A multidisciplinary pipeline.  
Annotating protein function is a long-standing problem, and is well assed by establishing a 
multidisciplinary, community-driven, collaborative pipeline (2,59,60). Given the large scope of 
the problem, here we sketch out a proof-of principle pipeline for functional annotation that could 
be accomplished today with current technologies. The first step is to generate a prioritized list of 
DUFs and PUFs; we suggest that proteins with homologs in numerous taxa from all three 
kingdoms are an excellent starting point. Next, informaticians can generate rough functional 
annotations or hypotheses using co-evolutionary studies, correlative gene expression patterns 
with known genes in multiple taxa/conditions, correlative protein interactions studies (i.e. yeast 
two-hybrid) with known proteins in multiple taxa/conditions, etc. This subset of genes will then 
be assayed using a variety of approaches to assign function. For example, growth rate 
complementation in bacteria and yeast provides one strategy to identify genes encoding 
proteins that likely have essential biochemical functions. These studies could be further coupled 
with metabolomic profiling. Fluorescently-tagged proteins will be generated and coupled with 
advanced imaging technologies to address questions of subcellular localization, tissue 
distribution (in multicellular organisms) and colocalization with landmark proteins. Loss of 
function studies in model multicellular organisms (e.g. Arabidopsis, Drosophila, C. elegans) 
using existing reagents or with CRISPR interference (CRISPRi) will be used to reveal 
developmental and signaling functions. This collected experimental information should be 
compiled in a publicly accessible, readily searchable online database. Making these data 
available in machine-readable formats (e.g. tab delimited text) with appropriate metadata (date 
and location of collection, assay conditions,etc.) is important for the training and validation of 
computational algorithms. Existing pipelines - like the Enzyme Function Initiative (EFI, 
(61,62,63) - provide an exemplar for extending and refining annotation efforts. 
 
Broader Impacts and Educational Outcomes. Many of these pipeline tasks are amenable to 
science crowd-sourcing and undergraduate laboratory curricula. We envision the possibility of 
nation-wide laboratory courses that assign small groups of students to gene products or protein 
domains of interest. These proteins can then be characterized using a small set of pre-defined 
and relatively straightforward assays, including growth rate complementation studies, 
microscopy-based characterization of localization, assays of cellular phenotypes for knockouts 
or knockdowns, as well as expression and purification trials. Importantly, these experimental 
efforts can be combined with informatics and comparative genomics analyses, providing a rich 
opportunity for interdisciplinary cross-training.  
 

Summary and Potential Impacts 

Increasing the throughput and information content of protein annotations is essential to enabling 
synthetic biology and metabolic engineering, discovering new drug targets, and most 
fundamentally, understanding the molecular basis of phenotype. Recent advances in high 
throughput phenotyping, imaging, and biochemistry indicate the potential for high-dimensional 
annotations of function. By going beyond simple classifications or categories, we might provide 



rich annotations of protein localization, physiological roles in varied conditions, and quantitative 
biochemical parameters. Collecting these data into a single, well-maintained and well-organized 
database would richly enable experimental biology and computational efforts to predict and 
design protein function.  
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