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Life on Earth exists as diverse, interacting biological systems to include the only extant form of 
humans, ​Homo sapiens​.  Nearly eight billion humans currently inhabit the planet.  Feeding these 
people, preventing the spread of contagious disease, and dealing with the demands of the 
expanding human population on Earth’s resources and biodiversity call for scientists to come 
together across disciplines to understand potential consequences and develop strategies that 
foster the health of all living systems.  
 
The National Science Foundation is spearheading efforts to transform our understanding of life 
and the interdependence of all its forms by calling for the reintegration of biology into a unified 
and integrated field.  Fundamental to integrating the silos of biology is the compilation, mining 
and integration of data.  Data are essential for testing hypotheses, models, and theory as they 
correspond to the actual observations of the natural phenomena. Integration of data from 
diverse groups of experts and biological fields has an enormous potential to move forward 
discovery and understanding of life on Earth. Many of the most pressing societal challenges, 
such as climate change, biodiversity loss, and sustainable ecosystem management, require the 
integration of heterogeneous data collected across multiple scales and disciplines. This makes 
data management, integration, and gap-filling fundamental to the future of scientific 
advancement. 
 
Data compilation is challenged by the need for development of management tools, services, 
and mathematical techniques. Moreover, the work of collecting, curating, and analyzing data is 
still very siloed by discipline. Here, we discuss nine challenges that prevent effective and 
efficient utilization of biological data across three categories: challenges deriving from the nature 
of the data, challenges deriving from the nature of biological systems, and challenges deriving 
from the nature of people (Box 1). 
 

Box 1: Biological Data Integration Challenges 

Challenges in the Nature of the Data 
● Data are collected on multiple scales: Integrating biological data requires combining 

data collected at the molecular scale (photosynthesis) with data collected at the global 
scale (remote sensing). Data about processes that occur in milliseconds need to be 
combined with processes that occur on geological time. 

● Data are highly variable: Data relevant for biology are highly heterogeneous in form, 
terms used, metadata provided, and protocols used to collect data.  

● Data sets have gaps: Life processes and the factors affecting them have been 
sampled unevenly across the planet and gaps will always be present.  

Challenges in the Nature of Biological Systems  
● Biological systems are dynamic: The systems that data represent are filled with 

feedback loops, trajectories, and stochasticity. Data represent a snapshot in time, 
which makes representing dynamics challenging. 
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● Biological systems have memory: The state of a system at any point in time is often 
affected by the conditions of the previous state, to include relative time (minutes, days, 
years), development and generation. Thus, data from a single instance rarely captures 
the complete picture of how the system works. 

Challenges in the Nature of People 
● Discovery: Researchers have trouble finding the data they need for a variety of 

technological and social reasons including a heavy reliance on word-of-mouth. 
● Access: When researchers do find data, they may have trouble accessing it, as 

sharing platforms are limited and not standardized. Professional incentives offer 
limited support for data sharing. 

● Education: Students and researchers may not have the skills they need to analyse and 
integrate data of different types and scales. 

● Support: Large-scale projects that require a high degree of data integration need 
public support and funding. 

 
This paper presents a vision for data compilation and integration across the silos of biological 
disciplines that will enable the pursuit of larger-scale questions still unresolved by previous, 
more reductionist approaches. Addressing these challenges, even partially, will push biology 
through a tipping point into new discoveries and make data more accessible to a wider 
audience. Open access to data and tools has the potential to democratize innovation. 
Reductionist approaches have led to many exciting discoveries, but now is the time to “zoom 
out” by connecting diverse data sets to learn and transform our understanding of life on Earth. 
 
Background 
 
Current Landscape 
Since the Enlightenment, scientific progress has had a foundation in data and observations. All 
scientific advancement is based on data gathered from the real world; even models and 
simulations have to be grounded in reality.  Thus, the creation and management of data are 
essential for progress in scientific knowledge. Data itself has a life cycle.  Once gathered, data 
can be reused and reanalyzed as new discoveries are made.  The reanalysis may better explain 
concepts or phenomena within the new context of understanding of the systems being studied 
[1–3]​ (Fig. 1). In order to discover and comprehensively understand more complex scientific 
systems of greater scope, we will need to be able to integrate larger and more diverse data 
sets. However, the divergence of biological disciplines and variability of data types are currently 
inhibiting progress on a class of large-scale, convergent questions about living systems. 
Researchers have been struggling with the nine challenges outlined in Box 1 for years. 
Progress is possible now because of recent improvements in computing power, computational 
methods, and community data standards.  
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Figure 1: Data Lifecycle. 

From 

https://ddialliance.org/sites/def

ault/files/Concept-Model-WD.p

df​.  
Data can be reused and 

reanalyzed numerous times 

after its initial collection. 

 
 
Challenges in the Nature of the Data 
 
Integration of data across disciplinary silos is challenged by the types of data that exist. The 
entire body of scientific knowledge is based on centuries of observations taken by thousands of 
researchers for myriad purposes. As a result, data are highly heterogeneous in form, 
terminology, and protocol. Rich technological sensing and intrinsic multiscale biological 
dynamics contribute to rich (heterogeneous) data modalities ranging from discrete levels (e.g., 
gene expressed/not expressed), to continuous values (e.g., protein concentrations), to 
graph-like structures (e.g., 3D chromatin conformation). Even if the data are very similar in form, 
different disciplines or even different researchers in the same discipline can use terms 
ambiguously ​[4]​. Heterogeneity can also arise from the cyclicity and noise of the biological 
phenomena being measured, which can change randomly or across spatiotemporal scales. 
Thus, combining data of different types requires special consideration. 
 
Biological systems exhibit multiscale phenomena, and so data are collected over multiple spatial 
and temporal scales (Fig 2). A mutation in a gene that changes the way a protein functions can 
affect the behavior of an organism and change the functioning of an ecosystem. It is not always 
clear how to relate measurements of subcellular structures and molecular processes to 
measurements of global ecosystem processes. Even measurements of the same process taken 
at different frequencies can be a challenge to integrate. Moreover, biological systems often 
behave non-linearly, and so existing data cannot be assumed to represent classic time and 
space (erdotic) principles. Ignoring these characteristics of a system during data analysis and 
model building can lead to incorrect predictive models, which impede the definition of and 
control towards a (good/healthy) performance envelope, ​[5–7]​ or obscure tipping points of 
fragility, disease, and frailty in biological systems. 
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Figure 2: Nature’s Envelope. 

Reused from ​[8]​. Entities (vertical 

axis) and processes (horizontal 

axis) occur over a wide variety of 

scales. The shaded area shows the 

combination of temporal and spatial 

scaling in which the dynamics of 

biological systems occur. 

 
 
The planet is very unevenly sampled ​[9]​. Uneven sampling is due to limitations in monitoring 
biological systems.  For example, due to limitations in technological sensing, some important 
variables cannot be measured continuously or even sensed without affecting others. Some of 
the most important variables are also among the more labor intensive and time consuming to 
measure.  This can result in samples with few replicates that have very low representation of 
real variation across time, space, and biological levels. There is also difficulty in uniformly 
sensing biological systems that encompass large spatial dimensions / regions, which can lead 
to sampling bias or a granularity “mismatch” between data sets.  Sampling bias implicit or 
explicit can skew the perceived importance of a factor in a system, and more heavily studied 
systems will have undue influence, if this is not controlled for in an analysis. 
 
Challenges in the Nature of Biological Systems  
 
The systems that data represent are very dynamic and are rarely in steady state equilibrium. 
They are characterized by multiple concurrent processes that may interact or have cyclicity. 
Biological systems can change their model structure (i.e., oscillating between various types of 
linear / nonlinear interdependencies in order to cope with environmental perturbations while 
ensuring specific biological functionalities) or change the parameters within their model structure 
over time ​[10]​. Interactions between the different components of a biological system can be 
complicated many-to-many relationships whose effects can be observed at some scales, but not 
others. This is reflected, for example, in the gene-to-transcription factor interactions in gene 
regulatory networks of bacteria ​[11]​. Additionally, systems are monitored in the real world, with 
uncontrolled (or even unknown) external conditions which affect the data in ways that are not 
well known. Our ability to understand these systems is limited by the variables we can measure, 
which in turn is limited by technology and resources. Decisions about what to measure can 
reflect bias and assumptions rather than biological reality. Often, the true dynamics of these 
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systems must be inferred from these biased data sets. Dynamic change is a critical component 
of biological systems that is difficult to capture using current data integration and analysis 
strategies. 
 
Biological systems exhibit long-range memory and fractal dynamics, meaning that current state 
depends not only on what is happening now, but also what happened in the past  ​[12–16]​. Thus, 
having all the data from a specific time point is not enough to understand the system. You also 
need data about what happened the day, week, month, or even year before. Long-term memory 
is the dynamic outcome of several interactive processes, rather than the result of a linear 
sequence of events.  Accounting for this memory (of organisms and systems) in data, analysis, 
and interpretation imposes challenges on its own, and thus further challenges the integration of 
data across disciplines and scales. Consequently, new mathematical and algorithmic 
techniques need to be developed not only for capturing the mathematical characteristics of 
biological data (e.g., non-Gaussianity, non-Markovianity), but also to be capable of determining 
the number of unobserved variables and perturbations ​[17]​ in order to construct comprehensive 
causal predictive models of the rules of life.  
 
Challenges in the Nature of the People 
 
The first steps in data integration is data discovery. The challenges of data discovery begin with 
the culture of sharing -  in biological sciences, academia, and in groups of people in general 
[18,19]​. Whereas meteorology, economics, and astronomy are built on open data, data sharing 
in the biological sciences is less mature and fraught with social and technical barriers ​[20–23]​. 
Despite this, the call to make research data, software code, and experimental methods publicly 
available and transparent is coming from within the fields of biology and is required by many 
funding sources (e.g., the NSF data management plan and NIH data sharing plan). Advocates 
of making data open say it is the only way to address the lack of reproducibility in scientific 
findings and the best way for researchers to gather the range of observations needed to 
increase the rate of discovery and identify large-scale trends ​[20]​. In addition, data sharing can 
democratize access to data types that require expensive equipment, improving access for 
researchers at small institutions. A robust culture of data sharing has the potential to 
revolutionize the social aspect of research. 

Even if made available, data discovery is still limited both by humans and the computational 
tools used to find data on the web. Humans are able to identify and interpret a wide variety of 
contextual cues in order to manage data heterogeneity, but are unable to operate at the scope, 
scale, and speed needed to cope with the volume of scientific data ​[24]​. Computers are much 
better able to handle the volume, but cannot cope with heterogeneity or use context as well as a 
human. Thus, humans increasingly rely on computational agents for data discovery, but without 
pervasive and consistent use of identifiers ​[25]​, data standards ​[26]​, metadata standards ​[27]​, 
and controlled vocabularies ​[28]​ search tools will not be effective. 
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Even when students and researchers are able to discover and access all the relevant data, they 
may not have the skills needed to integrate it correctly or at scale. Proper data integration 
requires knowledge of the data sets to be integrated (assuming metadata and documentation 
exists), and frequently requires knowledge of data formats, specific software tools, and 
computer programming. Informal education, such as the Carpentries ​[29]​ (a global community of 
instructors teaching basic programming and data science skills) has contributed to solving some 
of the training gaps and online tutorials have filled in others. Universities are beginning to offer 
data science programs, but these are not always integrated with the traditional subjects. It is still 
possible to get an education in biological sciences without learning the basics of data 
management.  

Data-driven discovery depends on access and reuse of data at a scale that must reach across 
projects and laboratories. Investments in data infrastructure such as tools, services and 
community standards are needed to enable data curation and access, but cannot be 
accomplished as a minimally funded “broader impacts” aside. This means that projects and 
funding dedicated to the creation of data infrastructure are needed. Since much of the research 
and development work in the United States is funded by federal agencies, the support of these 
endeavors depends on the US Congress and thus the public. Infrastructure to promote data 
reuse is definitely worth the investment, considering reuse is cheaper than recollection. Even 
so, these projects can still be a difficult sell for the same reason most infrastructure projects are 
neglected, i.e., they are not very exciting. An additional problem is the US taxpayers’ attitudes 
about science, which have been poor (but are improving) and have resulted in several 
federally-funded projects being targeted by conservative lawmakers ​[30,31]​. The stable and 
effective cyberinfrastructure necessary for data-driven discovery requires clear demonstration of 
the return on investment if we are to expect the public to bear the cost. The return on 
investment is clear, but convincing the US taxpayer in our post-truth era will require 
communication strategies that are new to many scientists ​[32]​.  
 
Proposed Solutions 
Solving these problems will require a consistent and dedicated effort to develop new 
technologies and community research norms. Below, we propose six solutions to address the 
challenges discussed above.  
 
Community-driven standards for collection, sharing, and analysis​. An important barrier to data 
integration is the vast heterogeneity of the terms, formats, metadata, and protocols. Some 
scientific communities have made progress by creating community-driven standards using a 
bottom-up, consensus-building approach (e.g., ​[33]​). For example, the Genome Standards 
Consortium (GSC) has established minimum reporting standards for sequence information ​[34] 
and the Earth Science Information Partnership (ESIP) holds regular meetings to develop 
standards for data and software ​[35]​. The systematics community has standards for how 
species are described, how photographs are taken, and how data are shared ​[36]​. Efforts to 
standardize methods for most commonly measured/used plant traits and techniques in plant 
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physiological ecology have been made ​[37,38]​. Many of the standards that are used are still 
very parochial, only used by a few labs or within a very focused sub-discipline.  
 
Biology, with the exception of biomedicine and a few other subdisciplines ​[33,39–41]​, has 
lagged in standards development and could benefit from sustained, coordinated efforts. Where 
investments in standards development have been made, innovations and insights have 
followed, e.g., in biomedicine ​[42,43]​. These successful efforts have developed around a 
standards body with a dedicated mission to develop and maintain standards. We recommend 
the development of a similar body for the biological science sub-disciplines that do not already 
have a process for developing and maintaining standards.  
 
Large-scale empirical data collection and monitoring coordination​. Two important barriers to 
data integration are the differences in protocol used to generate the data, and that different 
datasets may have a different subset of the variables of interest. One way to address this is to 
stage a global effort to collect data using the same protocols to measure variables of wide 
interest and importance for biology, such as NEON ​[44]​, IOOS ​[45]​, Ocean Sampling Day ​[46]​, 
and the Census of Marine Life ​[47]​. In addition to gathering large amounts of homogeneous 
data, these projects can compare data collected using different protocols and analyzed by 
different labs. In this way, we can better understand and cope with the variability introduced by 
collaborative science. Because of the inertia of very large projects, many of the protocols and 
standards developed for these projects are still in use more broadly. Even though these 
large-scale efforts can be expensive, they hold great promise for answering big questions in 
biology. We recommend identifying opportunities where large-scale data collection and 
monitoring programs have the greatest potential for reintegrating biology and building on these 
opportunities. In some cases, this may include identifying existing monitoring or standardization 
efforts built on to achieve this larger goal. Such efforts should take the lead in the development 
and dissemination of data and protocol standards across biological and environmental sciences, 
and on the comparison of results from different protocols and laboratories/groups to develop 
data transformations needed for integration. 
 
Machine learning and AI for automated knowledge discovery and data management.​ There is 
more data integration work to do than what we can possibly afford. Automated solutions will 
accelerate the work of integrating data across types and scales. Machine learning (ML) and 
artificial intelligence (AI) can help to determine what is important, fill data gaps, and create 
metadata. For example, in order to integrate data collected at different spatial scales, 
downscaling or upscaling is needed, which is the inference of new data using an algorithm. 
Metadata creation is dominated by semi-automated tools and online templates. We recommend 
the development and refinement of algorithms for filling gaps in data and metadata. This could 
include tagging data with ontology terms, spatial and temporal downscaling, and conversion 
from one format to another. In addition to these algorithms, we must also have proper 
documentation, provenance, and user interfaces for human-mediated quality assurance. High 
priority automated tasks include named entity recognition in biological data sets, data typing, 
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protocol detection, and transformation across formats, methods, and units. Additional 
investment in community-development work can identify additional high priority tasks. 
 
Math to assess the sufficiency of data​. How do you know when you have enough data? Current 
methods include statistics to assess variation among and between treatments that estimate the 
replication needed to achieve a significant probability value. Even so, it can be hard to know 
what is truly important to measure when studying an unknown system. Variables are chosen 
based on ease of measurement rather than importance. We recommend the development of 
new data science techniques to characterize signal-to-noise  patterns in data and error rates so 1

that we can understand when a data set is complete. These techniques need to be able to 
operate without simplifying assumptions (e.g., Gaussian statistics, Markovian / memoryless 
dynamics). 
 
New mathematics for biological data​. Algebraic topology, differential geometry, fractal geometry, 
fractional calculus, high-dimensional (multivariate) statistics, statistical signal processing, and 
machine learning are successful in analyzing and extracting knowledge from specific 
homogeneous data streams, yet they fail or face algorithmic and interpretation challenges when 
dealing with multi-modal, highly-dynamic, unstructured data affected by unknown noise sources 
or unknown perturbations. From a formal perspective, extracting knowledge from biological data 
requires rigorous algorithms and conservation principles to identify the unknown unknowns that 
may govern the dynamics of a biological system (i.e., unknown stimuli that transiently act or 
perturb parts of a biological system, unmeasured biological variables due to limitations in 
sensing, or interactions that obscure some variables from monitoring). We recommend the 
construction of a new mathematical framework capable of mining and analyzing data in all kinds 
of forms (e.g., combinations of series of events, time series, partially observed graph snapshots, 
time varying graphs). The new mathematics should not require knowing the entire model ​a 
priori​, but rather be able to discover unknowns from the geometry of the data and structure of 
the causal predictive model that emerges from time ordered data ​[7]​.  Developing and inventing 2

new algebraic, differential, and fractal geometry inspired frameworks to be able to analyze 
multi-modal data streams can not only identify the model structure, but also biological functions 
over specific scales. In order to deal with unknown degrees of nonlinearity, memory, and 
heterogeneity specific to biological data, the new mathematical techniques will require new 
computational techniques for quantifying information transfer, processing, and storage, which 
allows us not only to describe biological dynamics as new models of computation, but also 

1 ​Of note, not all noise and not all perturbations can be considered to be of wide sense 
stationary nature or to follow the norms of Gaussian statistics. Removing such simplifying 
assumptions calls for the development of new data science techniques in mining data streams 
and constructing mathematical (causal predictive) models. Often, carefully mining the noise can 
reveal information about the robustness / fragility or likelihood of a catastrophic event in the 
evolution of biological systems.  
2 ​This implies that the new mathematics does not require testing for Markovian or a 
non-Markovian fit, but rather identifies from the cross-analysis of geometrical dimensions of data 
which variables require a long-range memory or a short-range memory operator. 
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enables identification of scale-dependent causal interactions and reconstruction of time-varying, 
complex networks ​[17,48]​ ​[49]​. Within the complex networks/systems framework we need 
mathematical techniques that go beyond first- and second-order statistics (e.g., degree 
distribution, assortativity) and be able to estimate the higher-order statistics for defining and 
quantifying performance envelopes and change points / phase transitions in biological systems 
[5–7]​. Due to stochasticity and the nonequilibrium nature of biological systems evolution, 
verification and validation of new mathematical models of biological systems should not rely 
solely only on goodness-of-fit measures, but also on new predictive measures to reproduce 
specific characteristics, patterns, and trends (e.g., a multi-fractal signature, a specific degree of 
emergence, robustness, self-organization, and complexity). Lastly, the scientific collective effort 
should not concentrate on fitting specific mathematical models into biological data, but rather 
discover new mathematical models, rules, and principles that could help us understand the rules 
of life and inspire new theoretical foundations for artificial intelligence and computer science. 
 
Professional incentives for sharing and collaboration​. An important barrier to large-scale 
biological data integration is difficulty in getting data from individual researchers. Despite 
demonstrated benefits ​[50,51]​, data sharing is viewed as largely altruistic with little professional 
reward ​[52]​. Some progress has been made in the form of data journals, data citation guidelines 
[53–55]​, and the acceptance of data products as valued research output in some contexts. Even 
the “twitter famous” Research Parasite Award that honors outstanding secondary analysis is 
bestowed on the data consumers rather than the providers ​[56,57]​. Unfortunately, much data 
sharing is still accomplished solely due to the “stick” of funding agency and publisher 
requirements rather than any “carrot” of professional reward. We recommend the development 
of a much more robust system for recognizing the work of making data findable and reusable 
that includes the characteristics below. 

● Good data practices and interdisciplinary collaborations need to be recognized for 
promotion. This is a top-down decision at Universities and Institutions. 

● A professional development structure needs to be developed for data curators and 
information scientists who specialize in data stewardship in order to nurture their 
careers. 

● The funding advantage for researchers who hoard data should be removed. Data that 
are not shared need to be rendered useless even to the provider.  3

● Professionalize scientific software development practices and metrics. 
● Develop data citation guidelines and metrics that transcend discipline, similar to 

publication citation and metrics 
● Making data FAIR ​[24]​ needs to have testable metrics for success ​[58]  

 
Interdisciplinary collaborations and training​. It is nearly impossible to know the specific skills 
students will need at the end of the 5-10 years it will take to complete their training. Rather than 
solely imparting skills, students should learn the value of being 1) flexible (adaptable to the 

3 Data that are not properly shared are often useless to the provider, as anyone who has tried to use their 
own data from several years ago has found out. 
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unknowns), 2) curious (to discover the unknowns), and 3) brave (to tackle and master the 
unknowns). This can best be taught by example from faculty by engaging in larger 
interdisciplinary research projects where everyone interacts, participates, and contributes 
throughout the entire research process from hypothesis formulation to interpretation of the 
results within the limitations of each individual study. 
 
Discussion 
 
Addressing the problems of data integration in biology is an ongoing process that is worth the 
investment. The solutions proposed here will not eliminate the challenges, but will start a 
journey of incremental, community-driven progress that will require periodic reassessment to 
ensure the vision and goals are still valuable. Not only will we see an increase in the scale and 
scope of scientific insights, we will also see more reproducible science and improved data 
quality ​[59]​. 
 
Community participation is required for making the decisions needed to implement the solutions 
to the challenges of biological data integration. Mobilizing the community is hard work and 
requires sustained effort and funding. Fortunately, we can borrow strategies from disciplines 
that have successfully developed and maintained community-driven standards ​[60]​ and the 
technology industry has proven methods for the development, management, and maintenance 
of tools and services that engage users. These successful products and processes took years 
of sustained effort to develop, many by focused standards development bodies (TDWG ​[61]​, 
GSC ​[62]​, ESIP ​[63]​, OBOFoundry ​[64]​, OGC ​[65]​, INCF ​[66]​). Single meetings or publications 
that involve a limited number of stakeholders will not result in standards adoption. Overly broad 
standards that apply to too many sub-disciplines or data types will be of limited use. Standards 
development should be bottom-up with a defined decision-making process and governance 
plan. Discussion and decisions should be open, transparent, and well documented. It is 
absolutely essential that practitioners are directly involved in developing their own standards 
and best practices for data, sharing, and tool development.  
 
In addition to the specific concerns in the above challenges and proposed solutions, there are 
several considerations that underlie all data integration efforts. Large-scale data integration will 
inevitably require reuse of data collected outside the laboratory or discipline doing the 
integration. Thus, the following issues with data reuse are also issues for data integration that 
transcend the biological sciences. Each of these issues has been discussed in detail elsewhere 
and have solutions that can be borrowed from other disciplines and adapted for biology. We will 
briefly review them here. 
 
Data quality and trust 
There is no such thing as a perfect data set. Data consumers need to be able to assess the 
quality of the data they seek to use ​[22,23,67]​. Errors must be reported with feedback and fixed 
with documentation ​[68,69]​. This is critical for citizen science data, which is invaluable, but can 
have a real or perceived quality problem ​[70,71]​. In addition to managing human error, 
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consumers need to trust that data have not been corrupted or altered while being prepared for 
or stored in a repository ​[72]​. Tools, services, metrics, and best practices have been developed 
by the library and information science communities for this purpose. 
 
Data ownership and attribution 
Intellectual property is very important in science, where ideas are currency. Researchers rightly 
feel ownership over the data they collect, especially if the data were hard to collect. 
Nevertheless, data providers are making data available for reuse via a suite of licenses ​[73]​ and 
with a suggested citation ​[53]​. Unfortunately, data citation and licensing are still non-standard, 
making large-scale reuse and metrics-tracking difficult ​[74,75]​. Integrating data leads to 
additional challenges with attribution and provenance tracking of the original data sets and the 
integrated data set. Licensing can add unintended restrictions on reuse; thus, it is always best to 
use the least restrictive license possible, such as CC-0 ​[76,77]​. 
 
Data preservation 
Data integration and reuse implies that data are preserved for this purpose; however, there are 
far more data collected than what is possible to preserve in the long-term. Decisions must be 
made about what data are worth preserving and for how long. Librarians have been making 
these decisions for centuries. More recently, the information science community has made 
recommendations for ways that the biological and environmental science disciplines can 
prioritize data sets for preservation ​[78–80]​. 
 
Data rescue 
The vast majority of research output falls within the “long tail of dark data” which is not 
discoverable or accessible ​[81]​. These data are typically in legacy formats like floppy disks or 
non-computable formats like paper notes ​[23]​. Transformation of these data at scale is 
incredibly difficult and resource intensive with few generalizable solutions. Much of these data 
cannot be re-collected, making their loss particularly concerning. Finding a scalable path for the 
transformation of legacy data would have a big impact. Efforts within CODATA ​[82]​, the 
Research Data Alliance ​[83]​, and the earth sciences community ​[84]​ are working to educate 
researchers about the importance of data rescue and incentivize the task. Unlike the issues 
discussed above, data rescue has not found a good resolution and still requires significant 
effort.  
 
The discussion of data integration necessarily includes regret that disciplines, sub-disciplines, 
and laboratories are not as collaborative or interoperable as they could be. Not just from a data 
integration perspective, discovery of tools and services is very difficult across disciplinary 
boundaries. The typical response to seeing value in working across disciplines is to create 
another discipline that combines elements of the first two (Fig. 3). A large part of the focus on 
interdisciplinary work has been bringing together practitioners of the disciplines looking to 
collaborate. This is important, but just as much thought needs to go into the crosswalks between 
data. Many disciplines and data types have a unifying architecture, such as the periodic table of 
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the elements or the globe. Rather than solely focusing on how we build relationships between 
people, let’s also invest in building relationships across the data architectures. 
 
An unfortunate consequence of human-centric, cross-disciplinary strategies is that cross 
disciplinary data and tool discovery is primarily accomplished by word-of-mouth, making it highly 
reliant on an individual’s professional network. If the right people are not in your network you 
won’t find the resources. Discovery cannot solely rely on word-of-mouth and building the 
data-centric, cross-disciplinary infrastructure is key to having truly interdisciplinary data and tool 
discovery. 
 

A 

 

Figure 3. Integrating Disciplines 

Through Data Infrastructure. 

Scientific disciplines can be very 

siloed (A). Much work to promote 

cross-disciplinary collaboration has 

focused on expanding the networks 

of practitioners with less attention 

paid to integrating data and 

information architectures. As a 

result, instead of creating a bridge 

across disciplinary silos (C), another 

silo is created (B). The data do not 

know their discipline. We propose 

peeling away the disciplinary silos 

and taking a more data-centric 

approach, focusing on building 

bridges across information 

architectures (D). 

B

 

C

 

D ​Phylogenetic tree            Globe                      Periodic table 

                                
 
Summary 
The reintegration of the subdisciplines of biology, and the accompanying insights into the rules 
of life, require the reintegration of data. Without good data collection and management practices 
and data science, integration at scale becomes nearly intractable and puts these insights out of 
reach. Here we outlined key current challenges related to the nature of data, the nature of 
biological systems and the nature of people, and recommended solutions to these challenges 
with the aim of reintegrating biology through data. Significant work is required to develop data 
standards, best practices, and new mathematical approaches, and shift professional incentives 
that can start to overcome the barriers to data integration. Funding agencies can help by 
specifically supporting efforts to create community-driven data standards and interdisciplinary 
data architectures. Universities and Institutions can help by specifically rewarding data sharing 
and interdisciplinary work. Integration has been focused on human-centric strategies aimed at 
expanding researcher networks. We need to invest just as much effort into data-centric 
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strategies that expand networks of interoperable data. Addressing these challenges will form a 
solid observational basis to answer current big questions in biology and contribute 
science-based solutions to the most pressing social and environmental problems.  
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