
Deep Learning for Reintegrating Biology

Rolf Müller1*, Jin Ping Han2, Sriram Chandrasekaran3, Paul Bogdan4

1Department of Mechanical Engineering, Virginia Tech
2IBM TJ Watson Research Center

3Department of Biomedical Engineering, University of Michigan, Ann Arbor
4Department of Electrical and Computer Engineering, University of Southern California

Summary: The goal of this vision paper is to investigate the possible role that advanced machine learning techniques,
especially deep learning could play in the reintegration of various biological disciplines. To achieve this goal, a series of
operational, but admittedly very simplistic, conceptualizations have been introduced: Life has been taken as a multidimen-
sional phenomenon that inhabits three physical dimensions (time, space, and scale) and biological research as establishing
connection between different points in the domain of life. Using this conceptualizations, fragmentation of biology can be
seen as the result of too few and especially too short-ranged connections. Reintegrating biology could then be accomplished
by establishing more, longer ranged connections. Deep learning methods appear to be very well suited for addressing this
particular need at this particular time. Not withstanding the numerous unsubstantiated claims regarding the capabilities of
AI, deep learning networks represent a major advance in the ability to find complex relationships inside large data sets that
would have not been accessible with traditional data analytic methods or to a human observer. In addition, ongoing advances
in the automation of taking measurements from phenomena on all levels of biological organization, continue to increase the
number of large quantitative data sets that are available. These increasingly common data sets could serve as anchor points
for making long-range connections by virtue of deep learning. However, connections within the domain of life are likely to
be structured in a highly nonuniform fashion and hence it is necessary to develop methods, e.g., theoretical, computational,
and experimental, to determine linkage of biological data sets most likely to provide useful insights on a biological problem
using deep learning. Finally, specific deep learning approaches and architectures should be developed to match the needs of
reintegrating biology.

1 Purpose
The challenge of reintegrating biology arises because biology has grown into a large, heterogeneous field of science that
contains many distinct subdisciplines, each with a its own specific research questions, methodology, and terminology. This
makes it hard to find common ground among the different biological subdisciplines. Nevertheless, all areas of biology are
connected by common themes such as the rules of life and evolution. The tension between these strong common themes on
the one side and the current state of fragmentation of the field raises the question whether it would be possible to reintegrate
biology into a single coherent science again. The goal of this vision paper is to investigate the potential role of deep learning
(DL) approaches in the reintegration of biology. To do so, the paper presents operational conceptualizations for the current
fragmentation of biology and how reintegration of biology could be phrased as a deep learning problem.

2 Background
Life on earth is a multi-dimensional phenomenon. Its dimensions could be defined in several ways [19], in terms of basic
physical dimensions one could pick time, space, and scale to organize biological structures and processes (Fig. 1a). For
the sake of simplicity, these dimensions will be used in the current paper to illustrate the points discussed, but choosing a
different set of dimensions should not affect the basic argument presented here. In addition to the multidemensionality of
life, it is important to note that life on earth has spanned a very large range of values along each of the physical dimensions
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Figure 1: Conceptualization used for life and biological research: a) life as a multidimensional phenomenon spanning the
physical dimensions of time, space, and scale; b) biological research as a way to establish connections between different
points in the time-space-scale domain of life.

adopted here and this is likely to hold for other dimensions as well. In time, life has extended from its origin at least 3.5
billion years ago [24] to the presence and the future. In space, it covers the entire surface of the earth and the depths of the
oceans [3]. Finally, the scales of life range from individual atoms to the earth’s entire biosphere.

Based on the notion of life as a multi-dimensional phenomenon, the process of gaining new biological knowledge could
be regarded as establishing linkages between different points in the joint time-space-scale domain of life (Fig. 1b). For
example, one may want to predict if the population of a certain biological species will become (functionally) extinct in
the future based on its current demographic composition and other circumstances [17]. Making such a prediction could be
conceptualized as establishing a linkage along the time dimension (between the current and future status of the population)
while maintaining fixed positions along the space and scale dimensions. Similarly explaining the clinical symptoms of a
disease in terms of the underlying molecular mechanisms would be conceptualized as establishing a linkage along the scale
dimension, but it could also involve changes along the time and space dimensions as the disease may develop over time and
spread within the body of an individual or across a population of individuals.

3 Problem Statement: Fragmentation of Biology
In general, the difficulty of establishing relationships between points in the time-space-scale domain of life can be expected
to increase with the distance between the points to be connected and the multiscale spatiotemporal complexity of interactions.
For example, short-time effects tend to be more readily predictable than long-term changes and localized effects tend to be
easier to understand than distributed effects. However, even steps that are small compared to the extent of the entire domain
spanned by life can be very hard. For example, predicting the structure of a protein from its sequence of amino acids [9]
bridges only a comparatively small distance along the dimensions of scale (molecular to macromolecular) and time (tenths
of microseconds to seconds [2]). Nevertheless, making these connections is very computationally expensive, requires deep
domain-specific knowledge, and still poses unresolved challenges [9].Moreover, due to existing bias in biological datasets
towards manipulating only certain biological knobs and not all degrees of freedom, when designing the deep learning based
discovery we also need to quantify the uncertainty and trustiness of these predictions.

Using the conceptualization of biological research as making connections between points across the time-space-scale
domain of life, the current fragmentation of biology could be seen as a consequence of the difficulty associated with making
such connections, especially long-ranging ones. Different biology research communities are often bogged down by trying
to cross local boundaries in their respective subsections of life’s time-space-scale domain and hence have neither the tools
nor the capacity to reach out to biological phenomena and research communities at more distant points in the domain.
The current fragmentation of biology can hence be conceptualized as a shortage of connections – especially long-range
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Figure 2: Conceptualization for the fragmentation and reintegration of biology: a) The current fragmented state of biology
is the result of few and local connections; b) Reintegrating biology would be achieved by establishing more longer-ranging
connections.

connections – within the time-space-scale domain of life (Fig. 2a). Using the same conceptualization, reintegrating biology
could be achieved by establishing more and especially longer-ranging connections (Fig. 2b).

Finally it should be pointed out that in this view, the current fragmentation of the biological research community is not a
purely social problem that is, e.g., due to the tendency of researchers to stay within a community of like-minded peers and
use a specific terminology that isolates them from other life scientists. Instead, the root cause of this fragmentation can be
traced back to current fundamental scientific limitations on making connections between more distant points in the domain
of life. This does not preclude, of course, that various social and organizational factors also play important, amplifying roles
in maintaining the current fragmentation of biology.

4 Transformative Opportunity for Reintegrating Biology
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Figure 3: Convergence of “big data” and deep learning that could be critical for the reintegration of biology: a) The ongoing
automation of biological data acquisition leads to data sets across the domain of life that can act as anchor points for learning
connections between these points; b) Deep neural networks have the ability to learn complex relationships between their
inputs and outputs and are hence well suited for establishing links between data sets across the domain of life.

With a dedicated effort, it should be possible to harness two important ongoing and developments in science and engi-
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neering to create a transformative impact on the reintegration of biology. These two developments are (i) automation and (ii)
the deep learning revolution [25]. Achieving a convergence between these two broader scientific developments within the
life sciences could have a transformative impact on the goal of reintegrating biology.

Automation has found its way into many areas of biology that range from the smallest to largest scales of biological
organization. For example, at the molecular scale, obtaining genetic sequence data is now largely automated and highly
efficient [18]. At the organismal levels, there are many efforts to digitize the specimens in natural history collections [4].
At the population level, the advent of electronic health records and genotype-phenotype assays [6] provide millions of
data points on variation between individuals in a population. At the ecosystems level, camera trapping [21] and automated
acoustic monitoring devices [26, 13] are producing large amounts of image and audio data from ecosystems around the globe.
As a result of all these efforts, “big data” sets have begun to appear at many different locations across the time-space-scale
domain of life.

Where successful, such automated methods enable the collection of quantitative data sets that are much larger than
would have been possible with their respective manual equivalents. However, such large data sets also pose a challenge
since obtaining insights from large amounts of data requires sophisticated analysis methods. The DL revolution could
address this challenge. It is driven by methodological progress [25] that has made it possible to design a large and diverse
family of learning networks that are able to learn complex, i.e., nonlinear relationships between their respective inputs and
outputs [16]. By achieving this, the DL research community has managed to vastly expand the ability of scientists in any area
to discover patterns and find functional relationships in data that were not accessible by the much more restrictive classes of
the previously existing linear and nonlinear learning methods.

One of the remaining key issues with DL methods is that they typically require very large amounts of data for training.
Although there are many research efforts to remedy this situation and realize deep networks that can learn from small data,
this need for training on large data sets remains a restriction that is unlikely to be completely overcome in the foreseeable
future, Moreover, in order to overcome the variability and stochasticity that intrinsically characterizes biological systems and
the existing bias or even errors that exist in the biological data acquisition, we need to endow the deep learning framework
with capabilities for quantifying uncertainty and providing a degree of trust and confidence for each prediction. Hence, the
convergence between data automation and the use of DL in biology could alleviate the shortcomings of each of the two
methods and hence provide a powerful approach for addressing the root causes of the current fragmentation problem in
biology. In this scenario, the increasing number of “big data” sets produced by virtue of automated methods could be seen
as potential “anchor points” for efforts to learn new connections across the domain of life. DL methods could then be used
to exploit these anchor points and test whether a link between any given pair of points can be established.

5 The Need for Guiding Insight
Besides automation and DL methods, a third component could be critical to enable the reintegration of biology. This
additional component is insight that could be used to guide attempts to identify linkages across the time-space-scale domain
of life. Such guiding insight is likely to be critical because of two factors: (i) the enormous size of the domain of life and
(ii) the likelihood of a large variability in the strength of the linkages between different point pairs in this space. The latter
point is based on the assumption that the domain of life has very pronounced inhomogeneities in its connectivity structure.
This is to be expected because any linkages across the time-space-scale domain of life are the results of flows of matter or
energy and with it information. Points that are connected – either directly or indirectly – by strong flows of matter or energy
are likely to have likewise strong connections whereas those that do not will also not exhibit such linkages. In the spatial
domain, for example, the estuary of a river can be expected to be linked strongly to its upstream regions because matter is
being transported downstream. At the other end of these spatial examples would be ecosystems that are separated by strong
geographical barriers such as large bodies of water, mountain ranges, or deserts. For example, one may wonder whether it
would make sense to attempt a linkage between ancient DNA sequences from Siberia and recent camera trap data from the
Amazon since the objects described by the two data sets are widely separated in time, space, and scale.

Given this situation, a successful reintegration of biology using anchor points provided by quantitative data sets and
linkages established through DL will critically require guiding insight. The domain of life is likely way too large for a
selection of possible anchor points that is solely based on trial and error. This situation could be handled by virtue of existing
a priori knowledge and common sense, the efficient use of adaptive sampling strategies, and – perhaps – a specific theory
that could be developed for this purpose. These points call for the development of a specific theory and methodology that
could result in a better understanding of the “connectivity of life”, i.e., the linkage structure of the time-space-scale domain
of life. At present, it is not clear what such a theory could look like and developing it would most likely require an iterative
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process in which trial-and-error experimental attempts would alternate with research efforts dedicated to formulating such a
theory.

6 Customized DL for Reintegrating Biology
Research in DL has already produced a diverse set of different network architectures with proven advantages for specific
problems [16]. Some well-known examples are convolutional neural networks for processing of images [15], recurrent neural
networks for time-variant data (e.g., speech, [11]), reinforcement learning for establishing feedback control structures [14],
networks with residual layers for dealing with vanishing gradients [12], and transfer learning to enable crossings between
different learning and testing domains [22]. Based on the successes of these customized network architectures, it appears
to be worthwhile to conduct research to determine whether DL architectures can be customized to match structure in the
space-time-scale domain of life. For example, would it be possible/advantageous to come up with a network architecture
that would take in data from an orderly set of points along the scale dimension into subsequent network layers? Of particular
interest in this context would be deep multimodal learning paradigms [23] that could be a good fit to the multi-modal nature
of many biological data sets.

final
nonlinear
activation
functions

classical methods
human judgment

CNN

RNN

GAN

...

m
ul

tim
od

al
in

pu
ts

ou
tp

ut
s

Figure 4: Schematic outline of a deep multimodal learning paradigm to deal with different biological data that also takes
into account results from classical methods and human judgment.

Besides specific network architectures, another major thrust for developing DL for the purpose of reintegrating biology
could be the adaptation of DL approaches that can provide insights into the nature of the relationships that the network
has learned. In the DL community, these methods are often subsumed under the term “transparent AI” [7] and the basic
idea is to analyze a deep network that has learned a useful relationship to make the nature of the learned relationship
explicit. A common approach to improve interpretability of machine learning models is by creating hybrid models that
incorporate mechanistic detail based on relevant physical and biological principles. For example, a ’white-box’ machine-
learning approach that integrates mechanistic metabolic modeling with generic machine learning has been used to understand
the complex response of microbes to antibiotics [27]. Such hybrid models have also been used for integration of diverse data
types. A probabilistic regulation of metabolism method, for example, has combined mechanistic biochemical modeling with
data-driven probabilistic modeling to integrate thousands of transcriptomics and metabolic data set with growth phenotype
measurements in microbes [8]. This integration of modeling methods creates a ’constrained’ optimization problem where
in the boundaries of AI/machine-learning are set forth by mechanistic rules driven by biophysical and biochemical laws
and prior knowledge. Another strategy for increased interpretability of deep learning models involves using regularized
autoencoders that provide a lower dimensional representation of complex datasets. This approach was used to de-noise and
interpret single cell transcriptomics data generated using various technologies [1].
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Given the large gaps that still remain in the coverage of the time-space-scale domain of life by scientific exploration, e.g.,
the large number of biological species that are not yet described scientifically [20], it would also be important to develop DL
concepts that can deal with novelty and fill in gaps in data. Species that are not yet known to science could be discovered
with the help of DL methods such as semi-supervised novelty detection [5]. In this case, the known data that surrounds the
novel data point could be seen as a distributed cloud of anchor points that are to be connected to the novelty data point.
Biological data sets with gaps due to missing data or sample sizes that are too small could be augemented using generative
DL methods such as generative adversarial networks [10].

7 Conclusions and Possible Broader Impacts
Understanding the multidimensional, highly connected nature of life poses not only a key scientific challenge but is also
likely of prime importance to ensure that the earth’s biosphere can continue to support the survival of mankind. Despite all
the impressive progress in understanding biological phenomena at various levels, the current fragmentation of biology poses
the risk that critical relationships – especially long-ranging connections – will go unnoticed for too long. A pervasive use
of the best available techniques for the discovery of more, long-ranging connections across the entire domain of life could
mitigate this risk considerably and also lead to a much deeper understanding of life through time, space, and scale.
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