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The Goal:  

Use Big Data and Machine Learning approaches to crack the genotype to phenotype code and 

thereby generate predictive frameworks across biological scales. 

 

Introduction:  

Deciphering the mechanisms by which genotypes generate phenotypes is a central mission of 

biology. Fully realizing these mechanisms will facilitate integration of enormous datasets in 

organismal diversity research across molecular, morphological, behavioral, and ecosystem 

scales. Comprehensive, multi-scale data integration will impact broad reaching, interdisciplinary 

and integrative goals across biological disciplines including: 1) understanding the rules for 

signaling; 2) deciphering mechanisms underlying robustness and resilience; 3) predicting and 

ameliorating the impact of anthropogenic change to preserve biodiversity and ecosystem 

services; 4) integrating data across scale; 5) promoting proactive and personalized medicine 

designed around wellness instead of treating disease; 6) effective deployment of synthetic 

biology approaches for health, energy, and environmental remediation applications. While this 

unification of datasets has long been the goal of researchers, only now in the Big Data era are 

tools emerging that hold promise to augment human efforts. Machine Learning (ML) approaches 

now demonstrate their ability to make connections and find patterns at a pace that better aligns 

with the exponentially increasing rates of data collection. To fully exploit these advancements, 

the biological research community will need to invest significant resources towards 1) 

development of data collection and storage standards; 2) development of tools to overcome key 

bottlenecks in data acquisition and analysis; and 3) training initiatives and collaborative 

outreach.  Here we discuss how sustained efforts in these areas can further catalyze the Big 

Data era for cracking the genotype to phenotype (g2p) code.  We follow this discussion by 

detailing a few specific transformative research opportunities that will be advanced by these 

efforts.  

 

Challenges and their solutions:  

Effective deployment of high throughput data to decode genotype to phenotype mechanisms will 

require extensive modification and resource allocation all along the pipeline from data collection 

to publication and storage. In this section, we provide an overview of some key challenges and 

potential solutions. 
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1. Data collection and quality. 

For a tool or repository to be useful there needs to be community defined and driven standards 

regarding experimental design, data collection, annotation and availability. 

 

The need for experimental design standards. One of the challenges associated with using big 

data to crack the genotype to phenotype code is determining how to obtain “good” data. In 

particular, it is critical to determine what questions can be answered by data in hand, and what 

kinds of data are required to answer the key, unresolved questions.  Additionally, the potential 

benefits of high-throughput sequencing are greatly limited by inherent difficulties in extracting 

signal from noise. One way to address these challenges involves revisiting experimental design, 

including reassessing the type of sequencing data used to characterize the genotype to 

phenotype code. For example, sequencing techniques (RadSeq, SNP arrays or whole genome 

resequencing) should be carefully chosen to match specific research goals. Whole genome 

resequencing provides complete genomic data for relatively few individuals, making it optimal 

for gene discovery (Xu & Bai, 2015). In contrast, because RadSeq and SNP arrays exploit 

widely spaced markers, they can be used to characterize and compare relatively large numbers 

of individuals, but with less information for each sample (Tam et al., 2019). Thus these 

techniques are optimal for high throughput characterization of populations. Additionally, 

experimental design tools, such as GWAPower (Feng et al., 2011), can be used to facilitate 

optimal selection of sample sizes and sequencing type (average distance between SNP and 

candidate gene) for new candidate gene identification projects.  

 

Important questions to think about before starting to collect data. 

Extracting signal from noise can be related to two different aspects of the genotype to 

phenotype question. The data we are collecting may be noisy, but so may be the phenotype. If a 

phenotype is broadly defined, or influenced by a large number of genes with small effects, it can 

be incredibly difficult to have enough power to identify all, or any, of the genes involved.  

 

One way to circumvent this problem is to carefully define phenotypes, or to design experiments 

that allow for the detection of genes associated with specific aspects of biologically relevant 

phenotypes. For example, if interested in the genes underlying mate selection, identify the 

genes associated with visual preference, olfactory preference, or vibratory preference 

separately, instead of searching for genes associated with a broadly characterized mate 

preference. These narrowly defined phenotypes are the building blocks of the larger phenotype 

of interest, and once characterized, may scale up.  

 

2. Data storage.  

Currently the tools and data associated with high throughput sequencing are inaccessible, and 

unstable (i.e., often poorly maintained due to lack of support). Solutions will involve creating 

centralized, community edited (possibly open source), sustainable data and tool repositories 

(potentially modeled on ImageJ or the Brain Initiative). Additionally, robust infrastructures must 

be in place to maintain and oversee these repositories as they expand. There are already 

systems in place (https://biocontainers.pro/#/, NEON; Barnett et al., 2019) from which we can 

https://biocontainers.pro/#/


learn best practices. Finally, close links between research groups collecting and research 

groups  analyzing data will be essential.  A “hubs and spokes” approach may be the most 

efficient model to foster this, with constant feedback from all stakeholders and advisory groups.  

 

3. Data transparency.   

Methods for data collection, management, and analysis are often opaque, making it difficult to 

critically evaluate datasets or efficiently redeploy them in different contexts. Agreement across 

fields on proper annotation of methodology, data and metadata could help overcome this issue. 

Data Carpentry (https://datacarpentry.org/semester-biology/syllabus/) may provide a framework 

to teach standard methods for data collection and management across biology. 

 

4. Data sets are often incomplete.  

Next generation sequencing is poised to promote the comprehensive collection of genomic data 

along with transcriptional and chromatin dynamics in organisms, tissues and cells. High 

throughput mass spectrometry will allow comprehensive profiling of protein expression. 

Advances in imaging will enable pervasive characterization of cellular, organismal and 

population level phenotypes. Tool development must keep pace with these technologies in 

order to provide efficient high throughput solutions for gathering and analyzing data at critical 

bottlenecks. These bottlenecks include candidate gene identification, mapping connections in 

gene regulatory and protein interaction networks, precise quantification of relevant biochemical 

processes such as signaling ligand diffusion, phenotypic profiling and mapping cross-species 

interactions. To fill in these gaps, new tools and data-collection efforts must be promoted (in the 

model of the NEON initiative, Barnett et al., 2019).  

 

5. Data is exponentially increasing, unwieldy and noisy.  

It is critical to develop tools that can distinguish signal from noise across large datasets. Deep 

learning could be employed as a possible solution. The development of such deep learning 

tools will require a highly interdisciplinary approach, engaging computer scientists, 

mathematicians, and teams of biologists with wide-ranging expertise. 

 

6. Existing tools are often limited in applicability.  

It is essential to provide resources and motivation to modify tools so they are more generally 

applicable. Decreasing barriers and increasing accessibility to tools and databases will provide 

resources to a broader user base that may not have developer or technical expertise.  One 

component of increasing tool applicability is development of clearly defined and annotated 

instructions regarding the types of data taken as inputs, definitions of parameters (and how they 

can be tuned), the assumptions underlying the algorithms, and what is generated as output. 

This will often be most readily achieved by providing, along with the tool, a use-case, sample 

data, or vignette to serve as a tutorial for use and to exemplify performance. 

 

7. Biologists using machine learning should share best practices across subdisciplines.  

Scientists apply machine learning approaches to a variety of biological questions, from mapping 

genotypes to phenotypes or structure to function, to predicting relationships between the 

distribution of species and their environments. These subfields working independently likely 
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encounter some of the same challenges in applying and interpreting ML approaches: Are the 

big data sources we use reliable and well-maintained? Do machine learning predictions have 

mechanistic meaning, or are they occasionally over-fitting to noise? Biologists applying ML to 

big data questions across levels of the biological hierarchy might share experiences on best 

practices or lessons from their application and interpretation of their tools. Shared challenges 

may include identifying cases of model over-fitting, improving interpretability of “black box” 
machine learning output, quantifying or identifying uncertainty in predictions, and sharing 

practices for independence of training and testing data. Biologists undoubtedly would benefit 

from more interactions with computer scientists and mathematicians in these fields, but may 

also have high potential to learn from innovations or experiences in other fields in biology using 

similar tools. E.g., do ecologist’s concerns about the independence of machine learning testing 

and training data, and associated implications for model transferability or generalizability, relate 

to machine learning in other fields of biology (Wenger & Olden 2012, Bahn & McGill 2013)?  

Further, ML results are often not reincorporated into subsequent models. Solutions would 

involve providing efficient avenues for scientists to identify models that are relevant to their data 

sets and vice versa and motivate them to incorporate relevant data.  

 

Exciting Opportunities 

 

Here we detail a few exciting research opportunities across molecular, morphological, 

behavioral, and ecosystem scales that will be advanced by sustained Big Data and machine 

learning approaches. 

 

Using big data to solve problems in molecular structure. A key part of solving the genotype 

to phenotype code is investigation of molecular structure, especially developing a better 

understanding of structural dynamics. Biomolecular structures are often envisioned as static; we 

generate structural maps from snapshots of biomolecules in specific conditions. We know, 

however, that the biochemical reactions that occur at a molecular level are dynamic.  

Parameters of a protein's environment (pH, temperature, physical location in the cell, 

presence/absence of binding partners, signaling molecules or ligands) can influence the fold 

and function of a protein.  Similarly, RNA molecules can have different secondary structure folds 

despite the same nucleotide sequence. These dynamic modulations in structure can impact 

function and generate phenotypic changes at the cellular or organismal level (Nussinov et al., 

2019). A fundamental problem is that while we are interested in generating movies of the 

molecular machinery in action, we typically cannot access these ensemble dynamics. The 

predominant method used to investigate molecular structure is X-ray crystallography, which 

accounts for ~90% of the structural models available. These structures form the basis for 

generating questions about models for ligand binding, protein folding, and enzymatic function. 

These methods, however, depend on crystallizing the biomolecule, which necessitates finding 

chemical conditions in which a biomolecule will crystallize; this is a fundamental bottleneck in 

structural biology experiments, limiting our ability to structurally explore the dynamic ensemble 

of protein functional space. We currently have no working models for predicting what conditions 

will generate a crystal, despite extensive attempts to use information about genetic sequences, 

homology modeling, and biomolecular parameter space to make predictions. Leveraging a big 



data and ML framework of data organization and annotation coupled with developing accessible 

repositories for full experimental details (including what doesn’t work) and tools for using these 

data is critical for making predictive models. These big data approaches to molecular structural 

biology questions would enable a fuller exploration of the dynamics of protein function. 

 

Comprehensive mapping and analysis of gene regulatory networks. The developmental 

processes that generate diverse phenotypes (morphological, physiological and behavioral) are 

largely encoded by densely interconnected gene networks (Davidson & Erwin, 2006). Next 

generation sequencing is poised to identify nearly all of the components in these networks 

(coding genes, non-coding regulatory elements and associated chromatin states) in a wide 

range of organisms and cell types (Banf & Rhee, 2017; Das Gupta & Tsiantis 2018; Lowe et al., 

2017; Rebeiz & Tsiantis, 2017). However, we currently cannot leverage these sequencing data 

to accurately map the regulatory connections that link these elements in a high throughput 

manner (Thompson et al. 2015; Fiers et al., 2018; Skinnider et al., 2019; Siahpirani et al., 2019; 

Huynh-Thu & Sanguinetti 2019).  Network mapping is particularly critical for efforts to 

characterize dynamic shifts in gene network connections that drive the temporal unfolding of 

developing patterning programs and mediate environmentally dependent variability in 

morphology or physiology. Mapping will also facilitate characterization of key differences in 

network architecture or dynamics that generate diverse phenotypes at various biological scales 

from cells to super-organisms (Rebeiz et al., 2015). Additionally, mapping can promote 

characterization of genetically encoded intra and inter-specific interactions particularly within 

holobiont communities including microbe/metazoan, symbiotic or parasite/host interactions 

(Ferreiro et al., 2018). Mapping will also provide a productive framework for comparative 

approaches or targeted perturbations (CRISPR) used to test hypotheses regarding fundamental 

structure/function questions. In particular, these approaches can be used to elucidate 

architectural features or modules that are targeted by selection to produce novel phenotypes 

(Rebeiz et al., 2015; Nocedal & Johnson 2015). Additionally, these maps can be used to identify 

key differences within heterologous cell populations within an individual that are associated with 

disease states (Chiquet et al., 2019). Broad characterization of these functionally critical 

network features or modules can then be used to search for shared properties which may 

facilitate predictive models or formulation of underlying principles. It is also possible that tools 

used to map or analyze gene network connections can be deployed in relation to other 

biological networks at different scales and thus exploit other poorly utilized data repositories 

(Yan et al., 2016). 

 

A deep learning approach to gene expression analysis.  In the continued aim to “reverse 

engineer” the gene regulatory networks (GRN) that generate organismal diversity (Cussat-Blanc 

et al., 2019), researchers produce vast amounts of gene expression data.  Much of these data 

are in the form of microscopy generated images, and are used to detect spatial and temporal 

co-expression of genes, in wild-type and experimental systems, across an ever-expanding 

range of organisms (Puniyani & Xing, 2013; Davis, 2013; Wu et al., 2016).  However, these 

datasets go underutilized. Expression similarities, differences, and/or variation are rarely 

quantified within or across datasets (see excellent exceptions such as Mace et al., 2010; 

Patrushev et al., 2018).  Furthermore, gene expression patterns, like phenotypes, are open to 



subjective interpretation (Yang et al., 2019).  Machine learning approaches can potentially 

overcome these challenges, allowing for a more effective use of a comparative gene expression 

approach to generate hypotheses regarding GRN architecture and the ways network structure 

has shifted to generate novel developmental pathways and phenotypes.  Deep learning 

algorithms are networked computational models that mimic the layered node-like, neuronal 

structure of organic brains (Goodfellow et al., 2016).  Early variants of these algorithms relied on 

heavy processing of data before it went into the model in order for results to be meaningful.  

However, as Big Data gets even bigger, continued improvements to these algorithms are 

leading to autonomous learning, in which the model itself is required to find meaningful patterns 

in the data (Webb, 2018).   Recent approaches at employing deep learning algorithms yield 

promising returns in the building of “in silico embryos” (Shen et al., 2018) and generation of 

GRN predictive models using expression data (Yang et al., 2019).  Sustained progress in this 

area will require initiatives that 1) promote tool/algorithm development and sharing; and 2) foster 

long-term pan-taxa repositories for gene expression datasets. 

 

Identifying the genetic basis of behavior. One of the major hurdles of behavioral ecology has 

been identifying the genetic basis of evolutionary and ecologically important behaviors. 

Scientists have spent decades carefully characterizing a vast array of behaviors, from foraging 

to mating to habitat selection, in a wide range of species. These well defined phenotypes are 

ripe for genotype-phenotype discovery. Importantly, the ecological and evolutionary 

underpinnings of these phenotypes are often known, so identifying the genetic basis of these 

traits will facilitate a dramatic advance in our understanding of how selective forces on whole 

organisms translates to genomic change (as discussed in Bengston et al., 2018; Merlin & 

Liedvogel, 2019; Westerman, 2019). Additionally, many of the scientists studying these well-

characterized behavioral traits are familiar enough with their study system that they can identify 

the most interesting and most accessible traits for gene identification. This drops the number of 

individuals that need to be sequenced for high quality candidate gene identification from the 

thousands needed in model animals and human populations to 70-120 individuals. This is 

primarily because we are looking for new genes of large effect in non-model animals (e.g. 

Westerman et al., 2018) instead of for new genes of small effect (which is what we are looking 

for in model animals and humans, e.g. Agrawal et al., 2016). These new genes of large effect 

are likely to be most relevant and tractable for management of responses to global change for 

non-model organisms (below). The genomic and translational tools necessary for identifying the 

genes underlying these behaviors now exist (Bentley, 2006; Visscher et al., 2012; Ran et al., 

2013). The challenge is to integrate genomic, proteomic, and network approaches (and 

scientists!)  into the study of behavior, and to expose data scientists to the wealth of behavioral 

phenotypic data and associated behavioral ecologists that can be utilized in our efforts to better 

understand the genotype to phenotype pathway.    

 

Improved predictions for global change. Bridging the genotype to phenotype divide has high 

potential to improve management of species, communities, and ecosystems in response to 

global change challenges (climate, land use, invasive species), whether human-managed (e.g., 

agriculture; Abberton et al., 2016) or natural (e.g., endangered species, protected areas; 

Hoffman et al., 2015). Importantly, data deficiencies and uncertainties are likely to be most 



severe for wild species or remote ecosystems, relative to those upon which human societies are 

more dependent (Bland et al., 2015; Donaldson et al., 2016). As knowledge of genotypes has 

outpaced knowledge of phenotypes, researchers have called for high throughput phenotyping to 

keep pace with genomic data (Kültz et al., 2013). Both phenotype and genotype data is urgently 

needed to guide adaptation and mitigation of global change effects on species and ecosystems. 

For example, current correlation-based predictions of species responses to global change (i.e., 

relating presence or distributions to environment conditions) inaccurately predict these 

relationships because they: 1) lack mechanism; 2) ignore biotic interactions; 3) omit potential for 

evolutionary response to change (Urban et al., 2016). Big data (both genetic and phenotypic) 

can improve these predictions by improving our understanding of organismal physiology, 

dispersal ability, or evolutionary potential. Some specific data priorities to improve predictions of 

species, community, and ecosystem response to global change (land use, climate, invasive 

species) include: thermal, desiccation, and chemical tolerances; body mass; water and light 

requirements; life history traits; trophic position or diet; seed or larval size or dispersal traits; 

intra- and inter-specific interactions (mediated by behavior); and evolutionary or adaptive 

potential (Urban et al., 2016). 

 

Calls to reintegrate organismal biology by collecting high throughput phenotypic data to 

compliment high throughput genomic data (Kültz et al., 2013) can leverage management and 

conservation needs for some similar data to guide more mechanistic models of species 

responses to climate change (Urban et al., 2016). Both needs and applications share a 

dependency on: 1) big data (e.g., van den Hoogen et al., 2019), often analyzed by 2) machine-

learning or algorithmic approaches (e.g. Olden et al., 2008). Researchers might leverage 

funding opportunities by combining basic science questions in mapping the genotype to 

phenotype with applied science needs for both data sources to inform conservation and 

management of commercially important, invasive, or endangered species in natural 

ecosystems. This integration of basic and applied science requires choosing which organisms 

provide the most return on investment for both basic and applied science questions 

concurrently. Further, there are too many populations, species, and ecosystems to collect 

genotype and phenotype data for all biological entities that need management; rather, scientists 

and resource managers will need to prioritize representative systems that can generalize to 

similar taxa or ecosystems (Urban et al., 2016) - these may not be classical model organisms, 

but will still be surrogates or proxies for related organisms and ecosystems. 

 

Creating the human infrastructure for a Big Data and Machine Learning approach:  

Ironically, leveraging Big Data and ML tools to crack the genotype to phenotype code will be 

about supporting people. There has been recognition that lack of data science proficiency and 

expertise is a fundamental roadblock in scientific research (Barone et al., 2017). Currently, 

exciting pioneering efforts are underway - in tool and research development, and in fundamental 

research.  However, these efforts will likely remain insular, underutilized, and unavailable to the 

whole community - an inequitable situation - without broader development initiatives.  

Systematic top-down and bottom-up support structures are needed to: 1) attract, recruit, and 

train a diverse group of students to these questions, many of which may never identify as 

biologists (i.e. they will remain data scientists, statisticians, etc.); 2) support and retrain 



biologists who are interested in developing these approaches; 3) develop sustained pan-

disciplinary collaborations with experts in data science, mathematics, computer science, and 

related fields.  Addressing some of these challenges may involve development of 

interdisciplinary courses, programs, and degrees along with associated outreach to community 

colleges or other institutions that do not currently have access to resources. Formation of 

interdisciplinary teams who commit to attending and hosting each other’s conferences will help 

build common languages and interest in the key questions in their fields. Programs such as 

NSF’s Research Coordination Network (RCN) provide support pathways for human 

infrastructure and workforce development to achieve this goal.  Ultimately, the results of these 

efforts can be seen as more than a reintegration - but instead the emergence of an augmented 

biology. 

 

Recommendations: 

● Promote the development of minimum “best practices” for the experimental design and 

collection of data - especially when these data are expected to be utilized as part of a 

community pool. 

● Foster sustained and long-term initiatives for tool development and sharing. 

● Promote data standards and annotations. 

● Foster sustained and long-term data repositories, preferably those that would promote 

data sharing across scales and taxa. 

● Promote programs that recruit, train, and retain a diversity of talent - both new students 

and retrained biologists - that are interested in the use of these approaches.   

● Promote collaborative pan-disciplinary exchange between biologists and data scientists 

and related fields. 

● Identify opportunities where funding can be leveraged for basic and applied questions 

concurrently, including in response to management of natural and human-dependent 

species or ecosystems in response to global change. 
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