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As the fundamental theory of biology, evolution has the potential to unite and integrate all of the
disparate disciplines present in the modern biological sciences. However, questions about the
predictability of evolutionary processes and outcomes are still unresolved at multiple levels of biological
organization and time scales. Addressing these questions can provide a framework to scaffold
forthcoming inquiry and identify focal areas for future work. There are clear reasons to believe that
evolution can be predicted, and yet, there is experimental evidence and theory suggesting that
evolution is fundamentally unpredictable (Orr 2005, Stern & Orgogozo 2009, Bolnick et al. 2018). There
are examples that support the predictability of evolution at relatively short time scales and functional

genes under similar selective pressures within populations (Ramiro et al. 2016, Monroe et al. 2016,
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Hawkins et al. 2019). Patterns of parallel genomic evolution have also been recognized among closely
related lineages (Renaut et al. 2014, Seehausen et al. 2014, Irwin et al. 2016, Ravinet et al. 2017). For
example, Renaut et al. (2014) using genomic scans found repeatable patterns of divergence in large,
shared genomic regions with similar genomic architecture, among three pairs of sunflower species and
they related this to similar selective pressures. However, some of these same studies provide alternative
examples of the unpredictability of evolution from single nucleotide polymorphisms (SNPs) to genomic
architecture (e.g. Renaut et al. 2014, Ravinet et al. 2017). Other studies emphasize the unpredictability
of evolution (Bolnick et al. 2018, Langerhans 2018, Sailer & Harms 2017, Fitzpatrick et al. 2014, Tegze et
al. 2012, Takahashi et al. 2007). For instance, Langerhans (2018) found over 50% of the phenotypic
variation in Bahama mosquito fish was not explained by predation across replicated blue holes with and
without predators. At a molecular level, unpredictability may result from the fundamental dynamics of
protein structure. Sailer & Harms (2017) showed that complex combinatorial effects of mutations on
protein shape prevented prediction of evolutionary trajectories even after accounting for mutational
effects and pairwise epistatic interactions. Ultimately, much of this work suggests that evolutionary
predictability may only be possible at specific time scales or levels of biological organization, but not

others.

We argue that given accelerated global forcing such as global climate change, land use changes,
introduced species, and increased global pandemics this is a critical time to address whether we can
make predictions about how species will evolve. At larger spatial scales (biomes) and time scales
(decades to centuries), if we can relax knowledge of which specific individuals or species evolve, we may
have greater predictive power to understand the effects of these global forcings. For example, at the
ecosystem level, ecologists use evolutionary theory as a predictive tool in understanding the variation of
plant strategies across landscapes and experimental treatments (Farrior et al. 2013, McNickle et al.

2016, Weng et al. 2017, Dybzinski et al. 2019). This means that while we may not be able to say which



tree will form a canopy, we can be confident that some tree will. Given the above-mentioned global
threats, it is critical to understand whether communities will re-assemble according to simple processes
of individual-based selection to generate corresponding changes in ecosystems. Predicting the
evolutionary trajectories of populations could help us preemptively respond to human health concerns
(tumors, disease, etc.), conservation efforts, agriculture and pest management, ecosystem

management, and engineering of sustainable systems.

Here, we propose there is a continuum of predictability of evolution and that our ability to
predict decays with time, from short (e.g. 1 generation) to longer time scales (e.g. 1,000,000
generations). We also recognize that predictability at the genome level can also be scale dependent
from SNPs to aspects of genomic architecture (Lee & Coop 2019). Because we are not focusing on
predicting the evolutionary history of life from first principles, to avoid confusion, we specify what we
mean by prediction, and discuss the many factors holding us back and the multifarious problems we
need to solve to improve our predictive power. We address this topic across different levels of biological
organization from molecular, to populations, to ecosystems and different spatial scales from local to
global scales. Finally, we argue that the only way we can address this question is from an integrated
approach that encompasses the expertise and tools found in fields of molecular biology, genetics,
developmental biology, evolutionary theory, ecology, phylogeny, paleontology, biomathematics, and
that ultimately our predictive power in biology will come from an integrative biological perspective on
evolution. To paraphrase the great evolutionary biologist of the mid-20" century, Theodosius
Dobzhansky: Predicting evolution is only possible in light of the rest of biology, while understanding

biological processes and patterns is possible only in light of evolution.



“l do not think it means what you think it means”

When discussing evolutionary prediction, we must first settle on a shared vision of what it means to

predict. Although this seems simple at first glance, there are many biological levels of organization and

various degrees of precision. As we build from simple statements about evolution, our definition of

prediction becomes more nuanced and specific:

a)

b)

At the simplest level, we can predict that evolution will take place. This is rarely in doubt, and
rarely stoppable except in the case of extinction. Here we are not taking the adaptionist view
that given enough time, life would occupy mars, but because evolution is ubiquitous, predicting
its existence is trivial and not especially helpful. While not all traits will evolve, the question is
which ones do (see (c), below)?

A slightly more useful statement would be to say that, in a given environment, mean fitness
should increase over time (as long as there is genetic variation for fitness). More specifically, the
rate of increase in mean fitness is proportional to the genetic variance in fitness, as laid out in
Fisher’s Fundamental Theorem of Natural Selection (Fisher 1930, Shaw 2019). This statement is
preferable to (a) because it specifies a metric (mean fitness), direction (increasing mean fitness
to an adaptive landscape peak), and a rate. Yet, it lacks mechanistic detail and so has relatively
little utility for applied problems. Note also that mean fitness can also increase through non-
evolutionary means, via adaptive phenotypic plasticity, matching habitat choice, or niche
construction (Edelaar & Bolnick 2019).

A more useful and interesting goal of evolutionary biology is to predict which of the vast array of
traits are likely to evolve in response to a particular selective challenge (e.g., an environmental
change). Not all traits will evolve, as many may be at equilibria (e.g., subject to stabilizing
selection) or are neutral so their evolution is too slow to be relevant to the time scale in

question. But, typically, at least some traits and genes are likely to be evolving at any point in



d)

e)

f)

time; the question is merely which ones. Identifying these genes requires a detailed
understanding of how traits generate functions, thus determining fitness, a topic to which we
will return later.

If we can indeed identify the correct traits that will evolve over the relevant time scale (c), we
might then aspire to a greater degree of predictive power: in what direction will the trait(s)
change? Predicting directionality should generally be within our reach because it simply requires
knowledge of the sign of the slope of the selection gradient(s), acting on the population mean(s)
of the relevant trait(s).

Better still, can we make a quantitative prediction? By what amount (fold change, standard
deviations, proportion, etc.) will the chosen trait(s) change over a specified unit of time? Such
guantitative prediction is an achievable end goal for quantitative geneticists. A related goal is
predicting changes in the full trait distribution (e.g., variance, kurtosis), but this is a harder
problem. There is no simple equation, akin to the Breeder’s Equation, for predicting the
evolution of genetic covariances and higher moments.

The quantitative genetic approach often treats genetic, molecular, cellular, developmental
mechanisms as a black box, focusing on emergent and readily observable traits such as size,
shape, behavior, etc. A more complex goal is to predict evolution and action of finer-scale
mechanistic traits that ultimately generate the traits of interest at the organismal level (which
we might call upstream traits). Examples might include levels of gene expression, pathway
activity, enzymatic activity or concentrations, developmental patterning, etc. We could also
study these upstream traits to attempt to predict which ones will evolve (c), in what direction
(d), and by how much (e). This research agenda lets us predict not just evolution of the obvious
traits, but also a mechanistic biological explanation of how these trait changes are actuated by

changes in gene expression, development, etc. Ultimately all the phenotypic traits we might



choose to study, arise from changes in the expression of genes (where, when, how much), their

translation (speed, timing, splicing), and subsequent protein function (folding, active site

properties, dynamics, transport, degradation, interactions). These all have their roots in the

sequence, packaging, and epigenetic modification of DNA. Thus, many biologists feel that the

ultimate question of evolutionary prediction is to anticipate the precise genetic changes

underlying evolution. We can define distinct levels of predictive precision within this ultimate

guestion (Box 1).

The preceding kinds of evolutionary
predictions are all concerned with
evolution that is occurring within a
particular focal population (changes
in trait distributions and genotype
frequencies in a defined group of
individuals). Yet, evolution is still
more complex in that it occurs in
many interacting species
simultaneously. Far more challenging

than the ‘ultimate question’ defined

Box 1. Distinct Levels of Predictive Precision in Molecular Evolution

i)

ii)
i)

iv

-

Evolution will occur in a particular group of genes (e.g.,
gene ontology category, pathway, family of paralogs).
Evolution will occur in a particular gene.

Evolution of that gene will entail changes in particular
motifs or properties (e.g., a shift in polarity or shape, or
within a particular active site).

Evolution will entail changes in frequency of particular
genetic variants (e.g., single nucleotide polymorphisms
[SNPs], indels, gene copy number, chromosomal
rearrangements, etc.).

Predicting evolution of single loci is insufficient, because
evolution is rarely a single locus process. For instance,
initial adaptive changes might impose costs that require
compensatory mutations after. Therefore, for true
predictive power we should aspire to scale up goals g.i -
g.iv to multiple genes, how they interact, and ultimately
the whole genomic shebang (many loci, architecture, and
epigenetics).

above, is to predict the course of evolution (for traits or genomes) of ecological communities of

two or more interacting species. This is especially crucial (as we explore more below) because

species interactions are a major driver of evolution for constituent species, whose evolution in

turn alters their interactions that will lead to dynamic changes in each other’s selection

landscapes (so-called “eco-evo feedbacks”).




To summarize, we frequently use “predict evolution” as a convenient shorthand that
encompasses a wide range of goals with varying degrees of precision, qualitative or quantitative, applied
to various scales of organization ( e.g. genes, genomes, species, communities) due to a range of
mechanisms (e.g. selection, fitness, genetic architecture, species interactions). It is equally crucial that
we clearly specify the time scale over which our prediction applies. Some of these kinds of predictions
seem well within our reach at present, others seem like moonshots and may strain our current theory
and technologies, or some may be fundamentally impossible.

There is no question that the more ambitious forms of evolutionary prediction are beyond our
reach, and may always be so. But, even for these intractable problems, we believe it is important that
we distinguish between two distinct views:

H1: Evolution is predictable, if we simply had the right models and data

H2: Evolution is fundamentally unpredictable, not simply because we lack sufficient knowledge

H1. Evolution is predictable; we just don’t know how yet (models and data)

Our poor performance at correctly predicting evolutionary outcomes may result from incomplete
models of evolutionary and biological processes or insufficient data (spanning molecular to organismal
to ecosystem levels) to parameterize such models. We will need to make conceptual progress in all of
the following areas to create a successful predictive model of evolution. Note that there already exists a
large literature of evolutionary theory that provides key building blocks of such a model, drawing on
both population genetics and quantitative genetics (e.g., the Breeder’s Equation; Walsh & Lynch 2018).
This literature has led to useful tools like SLiM (Haller & Messer 2019), that can carry out whole-genome
forward-in-time, spatially explicit population genetic simulations with recombination, mutation,
selection, migration, in short almost all the evolutionary processes we might wish to incorporate. Yet,

even this powerful new tool excludes many processes that we know shape the direction of evolution,



including epistasis, genotype-phenotype mapping, plasticity, species interactions, population dynamics,
and many more points detailed below. Then, when we have a satisfactory predictive-evolutionary model
in hand, to apply this model to any real biological system we would require extensive, perhaps
prohibitive empirical data to actually parameterize the model to generate the desired predictions. Thus,
to predict evolution, we need both conceptual progress and data, which we detail below. Specifically,
we need:
1) A better understanding of the process of mutation. This includes variation in mutation
rates, more precise measures of the rates of transitions versus transversions, the distribution of
mutational hotspots and cold spots within the genome, and frequency of insertions and
deletions. Not to mention better understanding of differences among species, among
individuals or germlines within species, and within genomes. Such data exist for a few species
(e.g. Smeds et al. 2016, Ellegren 2003), but their precision can be improved and we need to
determine if the data can be generalized to more species or even within species. For short-term
evolutionary prediction, de novo mutation has negligible effect on evolution simply for lack of
generational time (with some possible exceptions, e.g. Hawkins et al. 2019), so we can likely
ignore these de novo mutations. Because mutation is fundamentally stochastic, we will generally
not be able to predict when (or whether) a specific mutation at a specific locus will occur. But,
over very long time scales, the law of large numbers might work in our favor to regain some
aggregate statistical predictive power. For instance, in very large populations with large per-
base mutation rates (e.g. HIV within a patient; Cuevas et al. 2015), one can reliably predict that
every feasible mutation will occur within a short time span, so the stochastic nature of individual
mutations ceases to matter.
2) The ability to predict how a given genetic change (SNP, indel, etc) will produce a change

in phenotype and function. This problem encompasses almost the entirety of biology, from



genetics to development, physiology, immunology, cell biology, biomechanics, etc., requiring
understanding of protein function, gene networks, patterning, etc. In a sobering sense, detailed
evolutionary prediction might need to wait until the rest of biology has finished their work. Or,
might we get around this difficulty by reverse-engineering this process? If we know the selective
pressure, might we anticipate the physiological, developmental, or protein structure changes
required to adapt to this selection. From that inference, could we describe the suite of
mutations that could achieve, individually or collectively, the protein or expression change? That
is, would we do a better job of predicting evolution if we studied function & genotype mapping,
instead of genotype = function mapping? This reversed approach might be especially valuable
in applied practice. If we seek to predict how a specific organism will evolve in response to a
particular environmental change, the forward approach requires that we consider all possible
mutations (or all possible genetic variants) in the genome, and how each of those changes might
affect phenotype, function, and ultimately fitness. The reverse strategy could allow us to narrow
the scope of problems to consider. For example, if we think of selection imposed by a novel
pathogen, we might immediately narrow our focus onto immune genes, and in particular the
most relevant specific genes (e.g., pattern recognition genes), and the specific motifs that need
to change to successfully bind to and recognize the new pathogen. We thus focus on the
computational problem for greater efficiency, though the problem remains daunting in practice
and might miss other adaptive pathways in response to the same selective pressure (e.g.
glucose aversion versus insecticide resistance in cockroaches; Wada-Katsumata et al. 2011).
Encouragingly, theoretical models combined with bioinformatics based data seem to predict
well the evolved distribution of biophysical properties of proteome (collection of all the proteins

in a species) (Zou et al. 2014, Zeldovich et al. 2007).



3) The mapping of genotype to phenotype (2, above) is contingent on many factors
including the environment (genotype by environment interactions (GxE)) and the effect of one
gene’s alleles on phenotype are also conditional on alleles at other gene(s) (epistasis).
Therefore, genome wide allele frequency data, and covariance among alleles, needs to be
known along with the epistatic effect of pairs of alleles at different genes. Three-way gene
interactions and higher order epistasis make our brains hurt and are computationally
challenging to model, but are exponentially more abundant than pairwise interactions (Kuzmin
2018). In practice, therefore, this goal requires understanding of GxE and epistatic modifications
of the genotype—> phenotype mapping. One must therefore know genome-wide allele
frequencies (for epistasis) and the range of environmental conditions that individuals
experience.

4) A better understanding of the impact of genomic (genetic) architecture on the response
of individual genes to selection. Taking a systematic approach, genomic regions where loci of
high adaptive value are clustered, can be found in parallel within lineages and identified for
multiple taxa (Yeaman 2013, Holliday et al. 2016, Raeymaekers et al. 2017). One mechanism is
chromosome inversions that appear to suppress recombination in heterozygotes and may act as
reservoirs of standing genetic variation (Morales et al. 2019). Then, in practice, we need an
empirical description of how architecture varies within a focal population (e.g., inversion
polymorphisms, and their effects on key genetic properties such as recombination and mutation
rates). In other cases, strong selection pressure with a high fitness cost may result in rapid
adaptation within a species that is similar across populations but vary in the genetic architecture
or genomic regions (e.g. female choosiness against interspecific mating between species of
Aedes, Burford Reiskind et al. 2018). In these cases, we need to know what combinations of

genes are contributing to the phenotype.



5) Points 1-4 above are essentially the field of genetics, broadly defined. But, to predict
evolution we need to go a step further and link phenotype to fitness. At the coarsest level this
could entail statistical description of covariation between phenotype and fitness (e.g., for the
Price equation; Queller 2017), or between genotype and fitness. Currently, we have the
statistical tools for this approach. While this might suffice over very short time scales, we lack
mechanistic understanding and therefore it will be hard to project further into the future.
Projecting into the future requires a functional understanding of how traits affect fitness,
drawing on biomechanics, behavior, ecology, etc. We lack the capacity, at present, to model
how present-day traits, let alone traits that do not yet exist, generate variation in fitness.

6) Once we understand genetics (points 1-4), and selection (point 5), we can use existing
tools of quantitative or population genetics to predict the course of evolution. This genetic
knowledge can in some instances be simplified by omitting mechanistic detail and taking a
guantitative genetic approach (e.g., the Breeder’s equation), or population genetics for the rare
case of simple single-gene traits. This is an established approach that works well over short time
scales, but will break down over longer time scales because we lack a mechanistic model of how
genetic variance-covariance matrices themselves evolve (we know that they do evolve), and
how selective pressures will change. Thus, the more mechanistic approach in points 1-4 provides
a potentially robust framework, but one that is harder to parameterize (if possible at all).
Whether one takes a mechanistic, quantitative, or population genetics approach, the key is
incorporating knowledge about the available genetic variation, how this affects fitness, and how
response to the resulting selection is constrained.

7) The entire endeavor 1-6 above leads to our ability to predict evolution in response to
known selective pressures. This works well when the present-day environment can be safely

trusted to remain constant. Yet, selection on our focal species depends on abiotic conditions,



and biotic interactions, both of which change through time and must be forecast for
evolutionary prediction. To do so, we must draw on fields ranging from meteorology (climate
change being a major driver of evolution during the Anthropocene), to toxicology (from human
pollution), to epidemiology and ecology more generally. We therefore need detailed data on the
present-day state of multivariate environmental and ecological factors (e.g., species densities of
predators, parasites, prey, competitors, mutualists), and the rules of how these change through
time (e.g., how species interact to drive each other’s changing population densities).

8) With models of changing selective pressures in hand (for example, the earth system
models used by the IPCC for environmental changes, IPCC 2014), we then need to revisit the
phenotype > function - fitness mapping (point 5, above) in the context of potential future
environments (including possible future communities and interactions). This will allow us to
predict how the fitness landscape will shift through time to favor different trait values, trait
combinations, and genotypes at various points in the future.

9) Lastly, the evolution of our focal species is embedded within a community of other
evolving species. Evolution of those other species can change the nature of their interactions
with our focal species, thereby changing the fitness landscape even when population densities
themselves have not changed. Conversely, evolution by our focal species can have reciprocal
effects on the abundance, genotypes, phenotypes, and fitness of all the other species with
which it interacts directly (or perhaps indirectly), driving evolution and ecological dynamics
throughout the community. These community-wide changes then feedback to affect our focal
species’ fitness landscape. Although eco-evolutionary feedbacks are a popular topic of
theoretical and empirical research today, we have not yet begun to grapple effectively with the

community-wide web of evolutionary feedback loops. Over long time-scales, these diffuse co-



evolutionary feedback loops are likely to be essential for predicting evolution, but may never be

sufficiently knowable.

The list of things we need to know, above, is sobering. And, it is likely we will never know
enough to effectively predict evolution with high levels of precision and mechanism over long time
scales and in natural environments. Yet, it is worth asking whether this is merely a practical constraint
on our ability to gather sufficient data? Or, is this a fundamental problem that evolution is truly

unpredictable regardless of our present knowledge? This leads us to hypothesis 2:

H2 evolution is not predictable, no matter how much we measure

Stephen Jay Gould famously argued in Wonderful Life: The Burgess Shale and the Nature of Life (1989)
that evolution would not repeat itself; if we rewound the ‘tape of life’ and replayed it from the
Cambrian, we would be unlikely to end up with anything like humans. In this spirit (and on a shorter
time span), we posit that evolution is inherently unpredictable at the molecular and population level.
This is due to multiple factors scaling from molecular to environmental. Selection is dependent on
genetic mutation, which is random. Even if we know the genes and genetic pathways that should be
important under a specific selective pressure, reliance on de novo genetic mutation makes it impossible
to determine when/if evolution will be possible in any specific form. Therefore, while laboratory
experiments can potentially determine what mutations could be adaptively beneficial we cannot predict
how or where in the genome mutations will occur in nature. Thus, predictability of specific allelic
distributions or morphological form is not going to be possible when evolution is mutation-limited.
Genetic stochasticity (drift, recombination, allelic segregation) provide additional molecular level
variation. We can describe probability distributions, but not make specific statements of what will
happen. This is an important point because we normally assume that evolution is predictable over the

short term but not long term. Yet, in the short to medium term, evolution relies on a small sample size



of new mutations, which are stochastic and so inherently not predictable. Over the very long term, there
are enough opportunities for new mutations that perhaps our probabilistic tools regain predictive utility.
Equally (or more) important is the ubiquity of epistatic interactions both within and among
genes. There is now widespread evidence that the order in which substitutions occur has a dramatic
impact on both the magnitude and sign of their phenotypic and fitness effects (Costanzo et al. 2010). It
is possible the complexity of order effects coupled with the inherent randomness of the mutational
process may render efforts to develop complete predictive models to overcome the genotype to
phenotype process inherently impossible (as opposed to practically impossible) (Sailer & Harms 2017).
Environmental stochasticity is a major source of fundamental unpredictability: climate, and
community dynamics. The environments in which some organisms or populations exist may prove so
variable and/or unstable that a consistent model (or prediction) of environmental and gene by
environment may not be possible as time scales increase. Chaotic dynamics in particular suggest that
there are fundamentally unpredictable changes in conditions (as opposed to our theories being
incomplete). However, time scale matters. Over short to medium time scales (years to decades), chaotic
dynamics mean that we have no capacity to predict future environmental conditions that could impose
selection on our focal organisms (dependent on population dynamics). Over very long time scales
(centuries-millennia), chaotic systems can remain within stable attractors (lacking global catastrophic
events), defining a field within which conditions are bounded. Likewise, stochastic processes such as
weather might be unpredictable over short time scales (days to weeks) but follow predictable long-term
trends (e.g., global warming over the coming centuries, or even cyclic dynamics such as Milankovich
cycles). Considering these time scales and relaxing the need to know specific species or individuals, and
given predictable long-term trends and the conserved structure of ecological guilds, we should be able

to make some predictions (e.g., there will be herbivores, carnivores, dominate tree strategies, etc.).
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Figure 1. Proposed graphical description of predictability of evolution, while distinguishing two

important sales, the molecular and population scales compared to the community and ecosystem scales

What about the future?

Our goal has been to evaluate the future prospects for predicting evolution. Is it predictable at all? If so,
what information and modeling capacity do we need? In evaluating these questions, we also show the
various ways of conceiving ‘prediction’ and how these depend on the time scale and biological level over
which we wish to predict. In general, we develop the hypothesis that the predictability of evolution at
the molecular and population levels decreases with the increasing time horizon (Figure 1). That is, we
may not be able to predict the specific species that will overcome challenges, but if we can predict the
environment in the future and have an understanding of the standing variation and traits under
selection, we may be able to predict beyond a few generations. We are argue, that even distinguishing
between H1 and H2 is useful and that the research and the data generated testing H2 will still provide

important knowledge about the evolutionary process in general.



We also propose that the predictability of the results of evolutionary processes at the level of
ecosystems may be high at long timescales (Figure 1). Over long time scales, evolution has some
potential to be predictive of the functional groups that appear in ecosystems. And, if we know the
environment in the future, we may be able to predict the specific traits of the species that make up the
functional groups within ecosystems (e.g. canopy trees, predators, carnivores, etc.).

We believe there is a great deal to be learned through the intersection of ecological and
evolutionary approaches to addressing many applied questions needing predictive biological solutions
including: tumor growth, HIV spread, resistance to control approaches in pathogens and pests, vectors,
energy, ecosystem functions, communities, species, computer viruses, memes. In order to make
progress on developing the predictive power of biology in a world where the environment is rapidly
changing and species are being lost from ecosystems, we must begin to integrate our understanding of
the predictive power of evolutionary processes to generate ecosystem functions from whichever species
happen to be present in the future.

Here we highlight the areas where research, both basic and applied, and computation modeling
should focus to begin to unravel a fundamental question in biology, how and when is evolution
predictable. While at the molecular and population level we are, in principle and given the correct
information, able to predict change over a few generations, it is difficult to predict the evolutionary
trajectories many generations in the future (e.g. 100 to 10,000,000 of generations), where stochastic
processes may create novel phenotypes. We call this predictive decay. Above we outlined, in a stepwise
fashion, the information needed to build predictive models of evolution. Yet, we ultimately need more
conceptual progress and more data, including not only how to predict evolution given a status quo, but
how we make predictions given global forcing of climate change, habitat loss, land conversion, and

invasive species.



In the future, if we achieve a greater capacity to predict evolution over short and long time
scale, we can apply this to address questions at different levels of biological organization. First, at the
molecular level, a predictive framework of molecular evolution in an environmental/ecosystem context
will allow us to confidently modify genes in organisms to recover species of conservation concern or
fight diseases without potential catastrophic consequences of down chain effects. While, at the
ecosystem level, once we refine our understanding of physiological constraints, environmental
pressures, and trophic interactions, we can tackle issues of restoration ecology, ecosystem
management, and predictions of changes in ecosystem function with climate change. With an
understanding of the evolutionary mechanisms that will not change themselves with the change in
environment and species loss that comes with climate change, we have some capacity to predict the

directions of changing ecosystem function in the future.
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