Air quality in Africa research at Columbia University

Prof. Dan Westervelt, Celeste McFarlane Congo-Kinshasa: Paulson Kasereka Isevulambire, Dr. Raymond Sinsi Lumbuenamo Congo-Brazzaville: Arnold Murphy Elouma Ndinga Kampala: AirQo Team Lomé: Prof. Sabi Kokou Accra: Prof Alison Hughes, Dr. Emmanuel Appoh Nairobi: Prof. Michael Gatari, Prof. Godwin Opinde, Prof. Paul Njogu USA: R Subramanian, Mike Giordano, V. Faye McNeill, Albert Presto, Randall Martin Many others...

Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Westervelt group

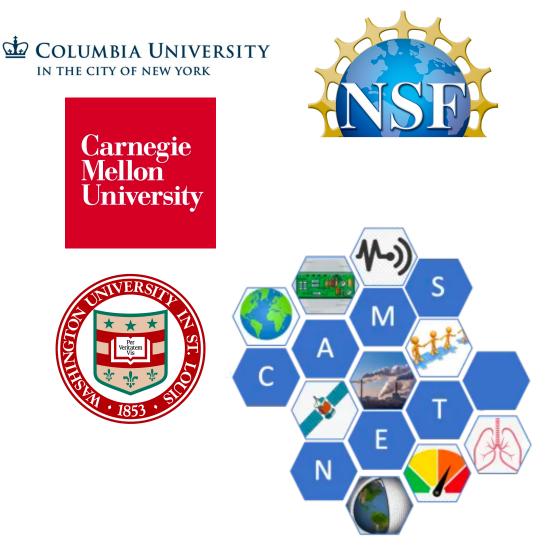
Celeste McFarlane (CU undergrad)

Funding:

US Dept of State National Science Foundation

Columbia University Center for Climate and Life USAID

Garima Raheja (PhD student)


https://www.nsf.gov/awardsearch/showAward ?AWD_ID=2020677&HistoricalAwards=false

Accelerating Research through International Network-to-Network Collaborations (AccelNet)

2

A global network for getting useful, actionable data out of low cost sensors

- Clean Air Monitoring and Solutions network (CAMS-Net)
- Create an international network of networks that provides a forum for exchange of knowledge, ideas, and data among scientists, decision-makers, citizen groups, the private sector, and other stakeholders towards the goal of improved usage and application of lowcost sensor (LCS) data for air quality
- Getting useful, actionable data out of LCS and exploring uses of this data for air quality modeling, satellite observations, policy recommendations, and health studies

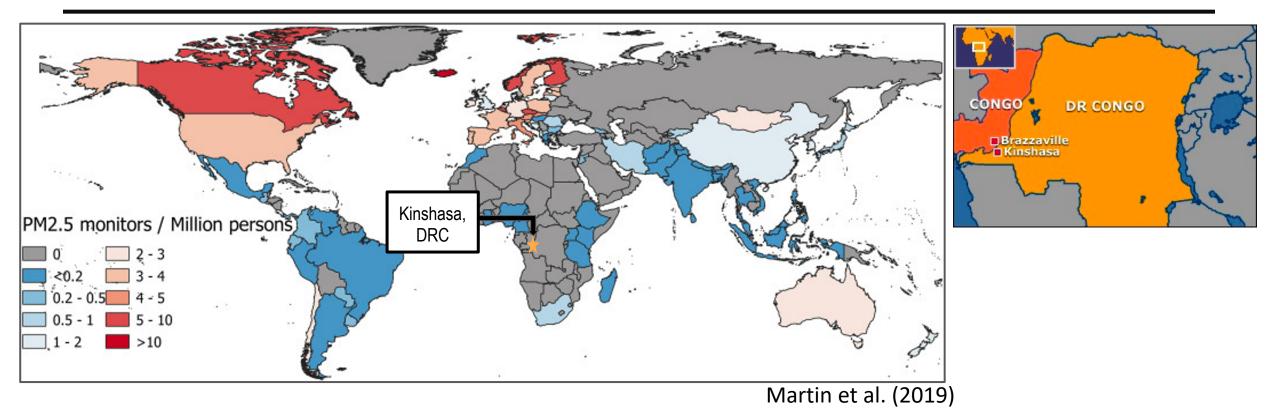
Clean Air Monitoring and Solutions Network (CAMS-Net)

- Website: www.camsnet.org
- To get involved, reach out to <u>danielmw@ldeo.columbia.edu</u>
- Example outputs from project: Tutorial on Multiple Linear Regression for air quality colocation study in R

I 27.0.0.147078/View=rmarkdown - I 27.0.0.147078/View=rmarkdown - I Open in Browser Image: Comparison of the open in Browser PurpleAir & Reference Grade Monitor Regressor Image: Source Code				Multiple Linear Regression Tutorial		
				Celeste McFarlane – cmm2349@columbia.edu		
PurpleAir Data	Reference Data Co	orrected Data	Model Summary	This document will serve as an introduction to building multiple linear regression models between reference grade data and low-cost sensor da		
Choose CSV File(s) Browse No file selected	Choose CSV File(s) Browse No file selected		model sammary	For the purpose of this tutorial, we will need the packages lubridate, tidyverse (which includes the packages dplyr, stringr, readr, purr, tibble and ggplot2), caTools and SimDesign. You can install packages by typing in the r-console install.packages("package").		
Data Time Zone (3 Letter Code)	Data Time Zone (3 Letter Code)			Loading required libraries		
UTC	UTC			library(tidyverse)		
PurpleAir 'Sensor A' Column Name	Reference Value Column Name			library(lubridate)		
pm2_5_atm	Raw.Conc.			<pre>library(SimDesign) library(caTools)</pre>		
PurpleAir 'Sensor B' Column Name	Date Column Name					
pm2_5_atm_b	date_UTC			Loading and Cleaning Data		
Date Column Name						
UTCDateTime				We will begin with a folder of multiple .csv files containing the purple air data. We will first set our working directory to this folder in order to load the files.		
Relative Humidity Column Name	Explanatory Variables					
current_humidity	Explanatory Variables			Load in Data		
	PurpleAir Concentration					

International Networking, Knowledge Sharing, and Capacity Building for Improved Air Quality in East Africa

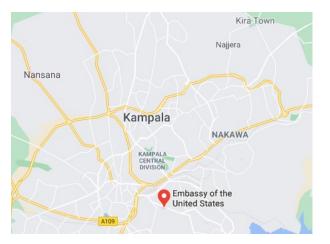
- Scope of project is East Africa
 Kenva Llaanda Rwanda Ethiop
 - Kenya, Uganda, Rwanda, Ethiopia



- Co-develop and co-implement an air quality management certificate program in at least one local university in each country
 - University of Nairobi, Kenyatta University, JKUAT, CMU-Africa, Addis Ababa University, Makerere University, others
 - Online in July 2021, in person soon after
 - Register here: <u>https://camsnet.org/air-quality-in-east-africa-certificate-program/</u>
- Co-develop and co-implement an air quality management plan
 - City governments and environmental protection agencies are involved in the project
- A locally owned air monitoring network for Mombasa, Kenya
 - LCS deployments in July 2021
 - BAM-1022 in Fall 2021
- With Prof. Solomon Bililign at NCAT

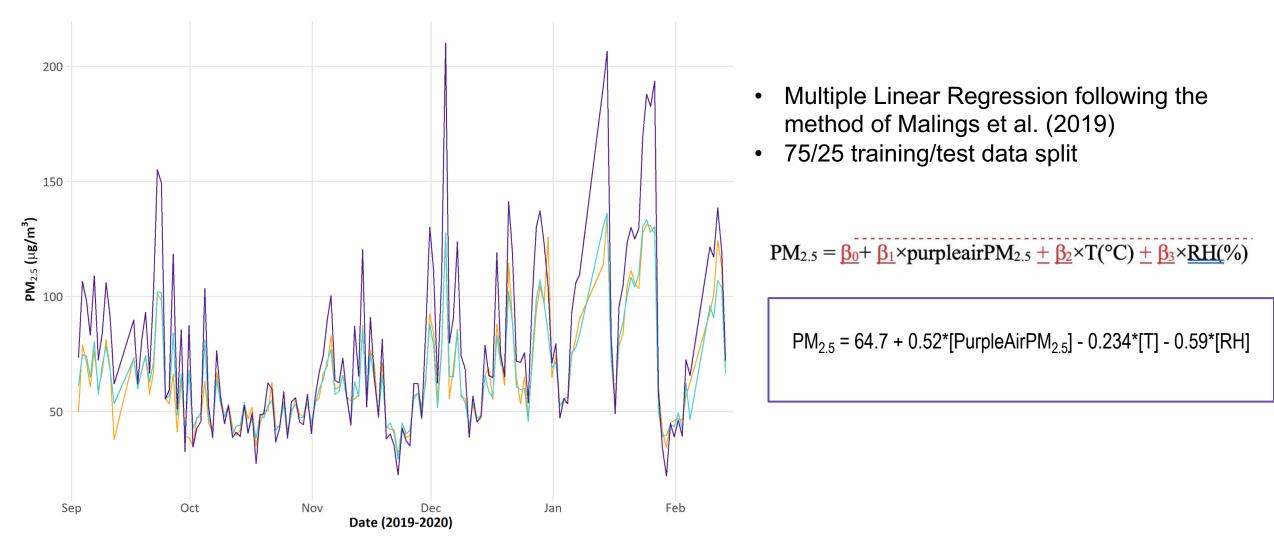
ECOTECH NOx analyzer

Air pollution data is sparse globally


- Kinshasa: population 14.3 million; Brazzaville: population 2.4 million
- No ambient air quality monitoring to date
- We deployed and calibrated a small network of 5 low cost air quality sensors starting in 2018, covering both cities

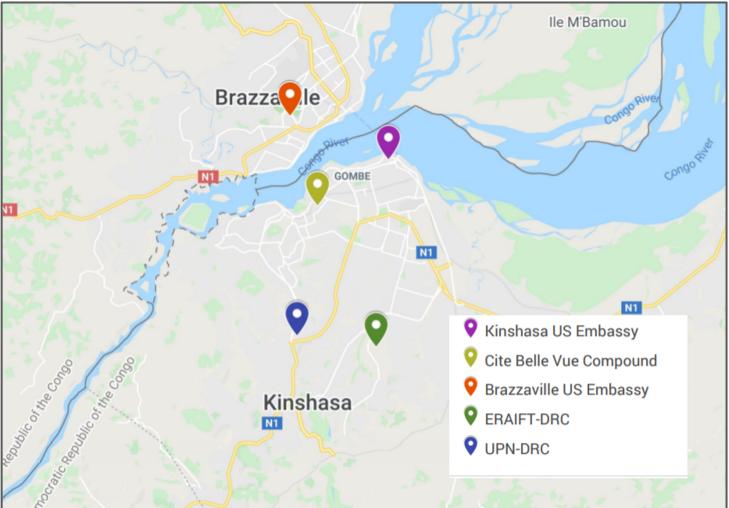
Kampala, Uganda

- Co-location of a PurpleAir at US Embassy starting in September 2019
- · Several other sensor groups also co-located



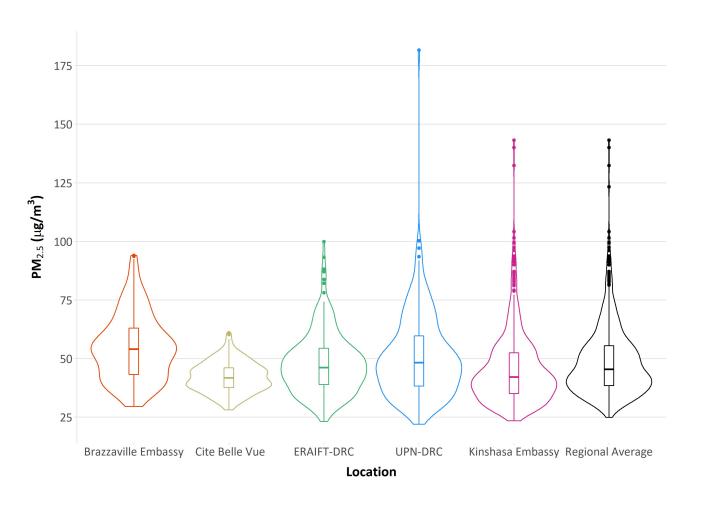
Co-located Sensors Produce High Accuracy Model

— PM_{2.5} (Corrected Purple Air Data) — PM_{2.5} (Embassy Data) — PM_{2.5} (Purple Air Data)

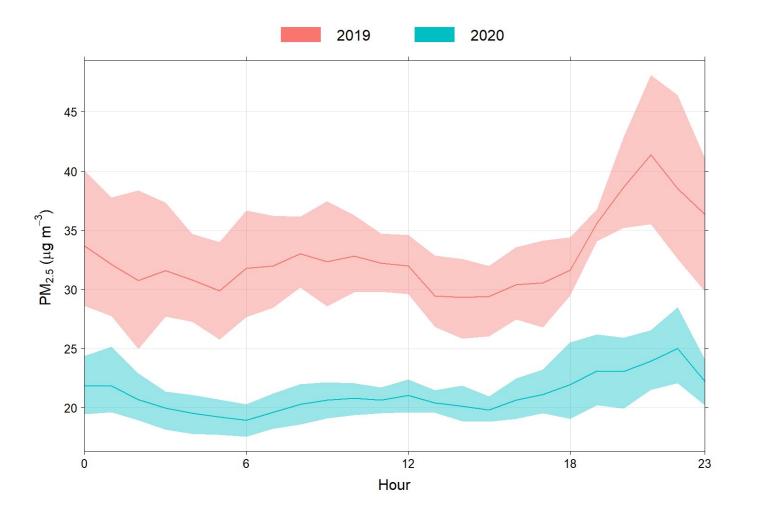


Kampala colocation (Sep 2019 – Mar 2020)

PM_{2.5}* = 64.7 + 0.52*purpleairPM_{2.5} -0.234*T(°C) - 0.59*RH(%)


Model	Averaging time period	R ²	MAE (μg/m ³)
Raw PurpleAir Data	Daily	0.88	14.8
	Hourly	0.88	20.3
Multiple Linear Regression*	Daily	0.96	3.4
	Hourly	0.90	7.3
Random Forest	Daily	0.86	5.8
	Hourly	0.91	7.2

Five Low-Cost Sensors Deployed in Kinshasa, DRC and Brazzaville ROC


- 1. Kinshasa US Embassy, March 2018
- 2. Cite Belle Vue Compound, November 2019
- Brazzaville US Embassy, February 2020
- L'Ecole Régionale Postuniversitaire d'Aménagement et de Gestion intégrés des Forêts et Territoires tropicaux (ERAIFT), November 2019
- 5. L'université Pédagogique Nationale, November 2019

Median Daily PM_{2.5} Values are Quadruple the WHO Annual Mean Guideline

- 5-site average median daily PM_{2.5} value is 42 μg m⁻³
- Highest median and quartile ranges located at UPN-DRC and Brazzaville Embassy
- Excluding CBV, "long tails" with nonzero density near 100 µg m⁻³, indicate a high frequency of poor air quality
- Discrepancies can be described by variation in location type (residential vs educational vs diplomatic)

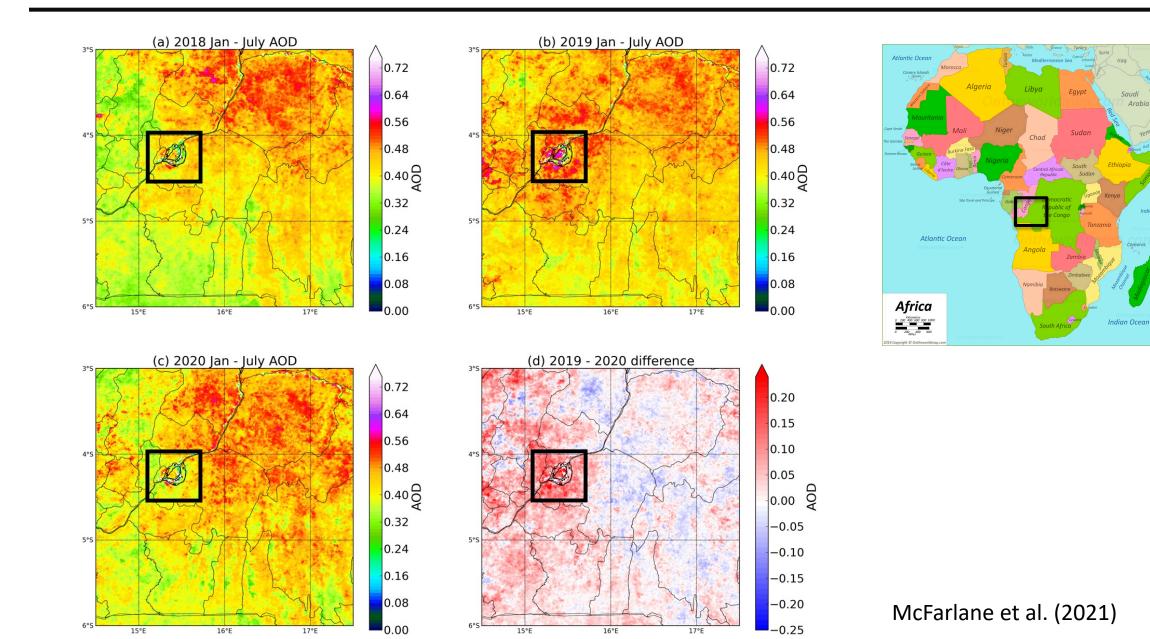
COVID19 Lockdown Lowers Mean Hourly $PM_{2.5}$ By 15 µg m⁻³

- Evening PM_{2.5} peak from 2019 flattened in 2020
- Average and maximum hourly PM_{2.5}
 increased between April 2018 & 2019
 - $\circ~~$ 32.18 vs 36 $\mu g~m^{\text{-3}}~$ & 98.42 vs 103.5 $\ \mu g~m^{\text{-3}}$
- Average and maximum hourly PM_{2.5}
 decreased between April 2019 & 2020
 - 36 vs 21.28 μg m⁻³ & 98.42 vs 40.02
 μg m⁻³
- Similar decrease observed in 1-km aerosol optical depth data over the region

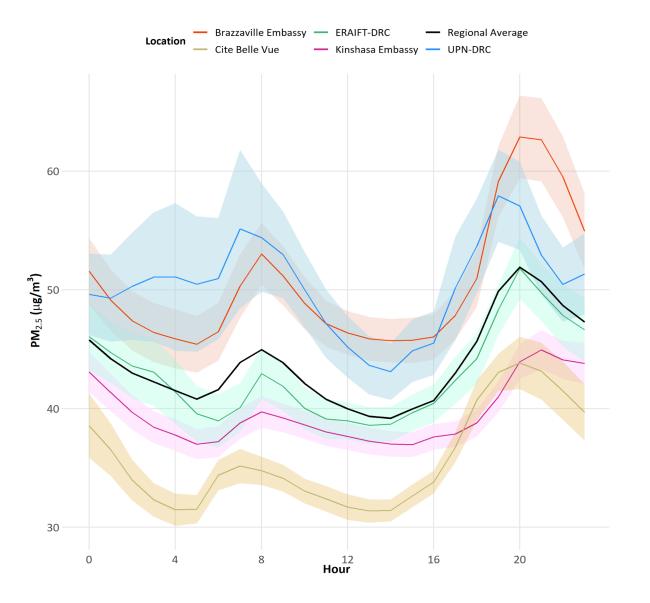
Summary

- Air pollution data is sparse in Africa, though air quality seems to be poor. Several new projects involving capacity building and new research on LCS will aim to improve data quality and spur innovative solutions
- Deployed a 5 node LCS network in Kinshasa and Brazzaville, the first ever ambient air quality data in these cities
- Corrected towards FEM using surface-based calibrations from a collocation in Kampala using MLR
 MAE reduced from 12 µg m⁻³ to close to zero
- PM2.5 in the Kinshasa area exceeds WHO guidelines by a factor of 4

 Network wide mean of 45 µg m⁻³
- COVID-19 restrictions lowered PM2.5 by about 15 µg m⁻³

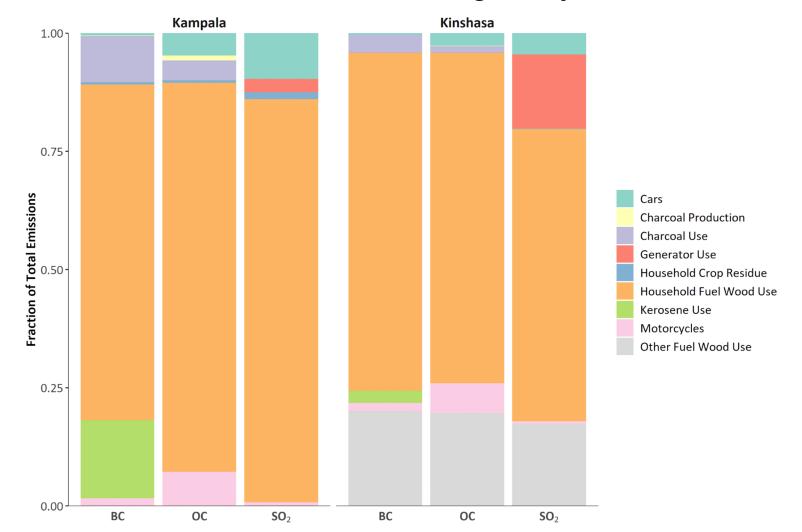

Extra slides

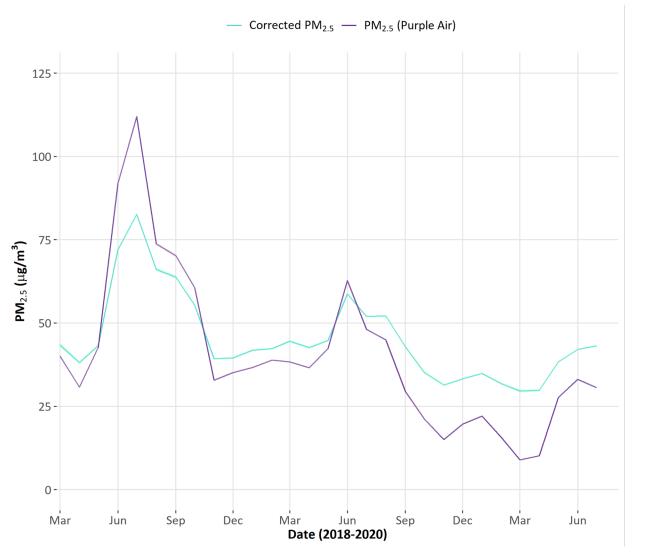
1-km Level 2 MAIAC AOD retrievals over Kinshasa


Arabia

Indian Ocean

15


Diurnal Peaks Coincide With Evening Vehicle Traffic and Cooking


- Sites have similar diurnal PM_{2.5} variability with varying PM_{2.5} magnitude
- Morning and Evening peaks likely correlated with increase in traffic and also increased fire activity for cooking, waste burning, etc
- Highest PM_{2.5} values occur at Brazzaville Embassy and UPN-DRC (≅ 60 µg m⁻³ peak in the evening)

Kampala and Kinshasa Have Similar Combustion Emission Profiles and are also similar climatologically

Kinshasa Dry Season $PM_{2.5}$ Peaks are Decreasing Annually

- $\cong 10 \ \mu g \ m^{-3}$ difference in calibrated and raw data for PM_{2.5} values between 25 $\ \mu g \ m^{-3}$ and 100 $\ \mu g \ m^{-3}$
- Annual means of daily PM_{2.5} decrease from 54.4 μg m⁻³ (2018) to 43.5 μg m⁻³ (2019) to 35.7 μg m⁻³ (through July 2020)
 - Meteorological differences do not explain decreases in PM_{2.5}
 - No known PM_{2.5} emissions control measures in the last 3 years
 - Decreasing PM_{2.5} values from 2019 to
 2020 can be partially attributed to
 COVID19