

Chemical Markers for Potential Health Actors in African Megacities

James M. Roberts, NOAA Chemical Sciences Laboratory, Boulder, Colorado

DALYs attributable

0% to <2%	10% to <12.5%
2% to <4%	12.5% to <15%
4% to <6%	15% to <17.5%
6% to <8%	17.5% to <20%
8% to <10%	≥20%

*Disability-adjusted
life-years attributable
to Air Pollution*

Caribbean and central America

*These estimates are based on extrapolations of
statistical relationships between PM mass and
health indicators.*

Persian Gulf

Balkan Peninsula

Southeast Asia

West Africa

Eastern
Mediterranean

Biomass burning

Wikimedia

Trash Burning

Dust

Biomass burning

Wikimedia

Trash Burning

Gorich/Shutterstock.com

Photochemical Processing is an important feature of the Impacts

Power Generation

Photo: Shutterstock/Kruger

Vehicle Exhaust

© Max Ahman/ UN Environment

Dust

Biomass Burning

Markers;

CO

Black Carbon

Furans

Phenols

(HCN, N compounds depend on fuel N)

Wikimedia

Health Actors:

Acrolein (α,β -unsaturated carbonyls)

Benzene

carcinogens

Formaldehyde

Isocyanic Acid (HNCO) protein modification

Nitro-phenols mutagens

Particle Reactive Oxygen Species (ROS)

Roberts, J.M., et al., *ACP*, 20, 8807-8826, 2020.

Refs.

O'Dell, K., et al., *Environ. Sci. Technol.*, 54, 11838, 2020.

Roberts, J.M., et al., *PNAS*, 108, 8966, 2011.

Koss, et al., *ACP*, 18, 3299-3319, 2018.

Sekimoto et al., *ACP*, 18, 9263-9281, 2018

Deaths from indoor smoke from solid fuels

WHO World Health Report, 2002

Trash Burning

Markers:

HCl

Particle Chloride
Metals (Sb, Pb...)

Health Actors

Dioxins, PAHs, PCBs

Vinyl Chloride

Heavy Metals

Refs.

Gunthe, et al., *Nat. Geosci.*, 14, 77-84, 2021.

Christian, et al., *ACP*, 10, 565-584, 2010.

More than half of all garbage is burned (globally)

Many urban areas have Landfill fires.

Some “unofficial” processes involve release of heavy metals and other toxics (e.g **electronics burning**, metals recovery).

Fig 2e. Relationship between Cl-to-OA and BBOA-to-OA ratio for Delhi, India, Gunthe, et al., 2021.

Vehicle Exhaust

Markers;
CO
Black Carbon
n-Alkanes
Nano-particles
PAH (Diesel)

Health Actors:

NOx
PAHs
Particles

Primary vehicle emissions are health actors, but also contribute to Photochemical Air Pollution

Traffic-derived nano-particles can be significant health actors

Figure 9. Source apportionment of (A) nonexhaust PM emissions (adapted from Harrison et al.²⁹²) and (B) total traffic-derived PM (adapted from Bukowiecki et al.¹⁹¹).

Gonet and Maher, *ES&T*, 53, 9970-9991, 2019.

Dust

Markers;
Mineral particles
Silica

Health Actors:

Transition metals

Pathogens

Particle Reactive Oxygen Species (ROS)

Some studies have identified dust as a significant contributors to health effects

Lelieveld and Poschl, *Nature*, 551, 291-293, 2017

Power Generation

Markers;
NOx
SO₂
Particles
Mercury

Photo: Shutterstock/Kruger

Much of the central power generation in Africa relies on Coal and Oil.

Health Actors:

NOx, Nitrate

Sulfate

Heavy Metals

Particles

Photochemical air pollution

Markers

NOx (monitoring “NOx” problem)

O₃

Acetyl peroxy nitrate (PAN)

Oxidized Organic Aerosol (OOA)

Health Actors

O₃

NOx

SOA

Oxidants

Long-lived radicals

Metals

Quinones

These might be best treated as a pair
e.g. O₃ + NO₂ \rightleftharpoons Odd Oxygen
because: O₃ + NO_(exhaust) \Rightarrow NO₂ + O₂
NO₂ is a health actor
Many low-cost sensors
really measure both

Ozone is the hallmark of photochemical Air Pollution: O₃ doesn't tell you where it came from, e.g. what VOC sources were involved

PAN compounds serve as indicators

PAN

MPAN

APAN

Summary/Conclusions

The connection between Air Pollution and Health impacts is well established

Details of the actual mechanisms and causative agents are lacking.

Better knowledge could allow us to :

- Address the most important causes first

- Design effective preventative or therapeutic measures

Sources and Chemical Actors important to African Megacities include;

- Biomass burning (Indoor and Outdoor): Toxics, Furans, Phenols, Particle ROS

- Trash burning: HCl, Dioxins, Vinyl chloride, Heavy metals.

- Vehicle Traffic: NOx, Black carbon, Nanoparticles

- Dust: Transition metals, Silica, Pathogens

- Photochemical Air Pollution: O_x ($O_3 + NO_2$), Particle ROS.