

Linking in situ radical observations to pollution production in megacities

William Brune

Penn State University

Workshop on a Pilot Design for Air Quality in Africa

June 8, 2021

Sources of air pollution – Engines of economies ...

Need smart regulatory policy based on sound science to improve standards of living while reducing air pollution.

Ozone (O_3) pollution – focus on net production

A problem: Most models underpredict unhealthy O₃ levels

WRF-Chem model for Beijing O₃ during the COVID lockdown.
T. Le et al., Science, 369, 702-706, 2020.

What does this underprediction say about model guidance for O₃ mitigation strategies involving NO_x and VOC reduction?

For mitigation, considering O_x (=O₃+NO₂) is better than considering O₃ alone.

- O₃ and NO₂ readily adjust to move toward photostationary state equilibrium during the day.

$$[NO_2] = (k_1[NO] + k_2[HO_2 \text{ and } RO_2])[O_3]/J_{NO2}$$

- Diesel vehicles emit ~(20-70)% of their NO_x as NO₂, and thus are another O₃ source.
- O₃ and NO₂ have similar air quality standards.

US EPA NAAQS	primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
Nitrogen Dioxide (NO₂)	primary and secondary	1 year	53 ppb ⁽²⁾	Annual Mean
Ozone (O₃)	primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years

NO₂ also increases PM2.5. Need to weigh O₃ and PM2.5 risks together.

Number of deaths by risk factor, World, 2017

Total annual number of deaths by risk factor, measured across all age groups and both sexes.

Our World
in Data

Source: IHME, Global Burden of Disease (GBD)

Some perspective on air pollution in Eastern Sub-Saharan Africa

Number of deaths by risk factor, Eastern Sub-Saharan Africa, 2017

Total annual number of deaths by risk factor, measured across all age groups and both sexes.

Our World
in Data

- Indoor + Outdoor #4 for both

Source: IHME, Global Burden of Disease (GBD)

CC BY

Death rates from air pollution, World, 1990 to 2017

Death rates are given as the number of attributed deaths from pollution per 100,000 population. These rates are age-standardized, meaning they assume a constant age structure of the population: this allows for comparison between countries and over time.

Our World
in Data

Source: IHME, Global Burden of Disease

CC BY

If indoor air pollution deaths decrease, will outdoor air pollution deaths rise?

Take care of indoor air pollution first, then outdoor PM, and then outdoor O₃?

Death rates from air pollution, Eastern Sub-Saharan Africa, 1990 to 2017

Death rates are given as the number of attributed deaths from pollution per 100,000 population. These rates are age-standardized, meaning they assume a constant age structure of the population: this allows for comparison between countries and over time.

Our World
in Data

Source: IHME, Global Burden of Disease

CC BY

How to achieve a higher standard of living?

Death rate from particulate pollution vs GDP per capita, 2017

Death rates from outdoor air pollution are measured as the number of premature deaths attributed to outdoor air pollution per 100,000 individuals. Gross domestic product (GDP) per capita is measured in constant 2011 international-\$.

Our World
in Data

In Sub-Saharan East Africa, O_3 levels are not high, even though NO_x and VOCs are fairly high. Why?

24-hr Averages for Select Cities						
Location	Year	O_3 (ppbv)	NO (ppbv)	NO_2 (ppbv)	O_x (ppbv)	CO (ppmv)
Nairobi, Kenya*	2015	4-14	6-18	1-55	5-69	0.5-1.7
Seoul, S. Korea	2016	36	7.9	32	68	0.46
Mexico City, Mex.	2003	28	2.4	28	56	0.72
Bakersfield, CA	2010	42	0.65	6.4	48	0.16
Houston, TX	2006	30	1.2	6.4	36	0.21
Houston, TX	2009	37	0.32	5.1	42	0.18
New York City	2004	23	4.2	28	51	0.38

* From 6 different sites in and around Nairobi. deSouza, Air Quality, Atmosphere & Health (2020) 13:1487–1495

In China, why is O_3 going up when PM2.5 is going down?

Li et al., Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China, PNAS, doi/10.1073/pnas.1812168116, 2018

- GEOS-Chem global model study of China O_3 from 2013-2017
- PM2.5 goes down, but O_3 goes up over standard in eastern China (8-hr 82 ppbv)
- Reductions in a combination of NO_x and VOCs required to bring O_3 down as PM2.5 levels decline
- Claim: PM2.5 a sink for HO_2 ... Add HO_2 aerosol uptake (lost in 20% of collisions)
- PM2.5 down means HO_2 up and thus O_3 up

Airborne observations from South Korea: KORUS-AQ (2016)

Observed HO₂ inconsistent
with HO₂ uptake on PM2.5

Conclusions for Sub-Saharan East Africa

- There appears to be enough NO_x and VOCs to make much O_3 .
- Reducing PM2.5 could increase in O_3 to unhealthy levels, although the chemical mechanism is not clear. However, it may be worth it.
- Simultaneously reducing NO_2 sources and VOCs that form O_3 and PM2.5 should reduce PM2.5 while keeping O_3 low.
- Model guidance for O_3 mitigation should be trusted only if it can demonstrate the ability to consistently simulate: (1) unhealthy O_3 values and (2) an O_3 increase with decreasing PM2.5 in megacities.
- Hourly measurement of O_3 , NO_x , CO, and VOC/OH reactivity needed
- My recommendation: start restricting trash fires and diesel use.