In Vitro Toxicity of Complex Aerosols: What are the key drivers?

Dr. William Vizuete

http://vizuete.web.unc.edu

Dr. Prakash Doraiswamy – RTI

Dr. Jean Kim – RTI

Dr. Ninell Mortensen – RTI

Dr. Ryan Chartier – RTI

Dr. Vikram Rao - RTI

Dr. Karsten Baumann – UNC

Dr. Solomon Bililign – NC A&T

Air Pollution: A Complex Exposure

- Particulate Matter causes ~6 million premature deaths worldwide
- Combustion is a significant contributor

What is the driver of toxicity? Systematic *In Vitro* data can provide some answers

How do you measure the toxicity of a particle?

In Vitro Technology

- Invented at UNC
- Electrostatic deposition mimics human lung
- PM composition, size, and interaction with gasses retained

CelTox Sampler

www.medtecbiolab.com

Zavala et al., Chemico-Biological Interactions 220 (2014) 158–168

Novel In Vitro Technology

Zavala et al., Chemico-Biological Interactions 220 (2014) 158–168 reprinted with permission from Elsevier

Air Liquid Interface

Secondo et al., Critical Reviews in Tox. 2015

Lung Epithelial Cells

- Human Bronchial Epithelial Cell Line (16HBE14o, BEAS2BEAS, EpiAirway, primary mice, A549)
- 250,000 cells plated per insert in complete growth medium
- Grown to confluency
- Growth medium replaced with low serum medium two days prior to exposure

Zavala et al. Inhalationo Tox.

Biological Impact

LDH

Cytotoxicity

- Release of Lactate dehydrogenase (LDH)
- Gene Expression
 - Inflammation markers
 - IL-6 & IL-8
 - Oxidative stress markers
 - HMOX1 & COX-2

Exposure Experiments

- Diesel emissions
- Photochemically "aged" and fresh
- Comparison with resuspension
- Wide array of genes

Lichtveld, Environ. Sci. Technol. 2012, 46, 9062–9070

Genomic Responses

Reprinted with permission from Lichtveld, Environ. Sci. Technol., 46, 9062–9070. Copyright 2012 American Chemical Society.

Exposure Experiments

- Biomass Burning
- White Pine, Smoldering
- Fresh and Aged
- Ultrafine

exposures

Preliminary Biomarker Results Ultrafine PM

- Cytotoxicity
 - Significant difference at immediate and 4-hr post exposure
 - More release from cells then at immediate collection.
- Genomic Responses (vs incubator)
 - Significant increase in all genes for cells exposed to ultrafines at immediate collection
 - Similar response as aged exposures
 - After 4 hours:
 - IL-6 and IL-8 had a significant decrease in expression
 - HMOX1 was significantly increased in expression
 - No significant difference in expression of COX-2

Exposure Experiments

LPG and MeOH Cookstoves Fresh, Ultrafines

Exposure Experiments Ambient Conditions (BEE-TEX campaign)

- Clusters of chemicals identified, correlated with gene expression levels
- Benzene was a prominent pollutant among clusters
- Relevant pathway signaling of three genes (FN1, TNF, and TP53) that have been shown to be associated with lung cancer.

Eaves et al., ES&T 2020, Vizuete et al., Environ. Health Insights 2015

Impacts

• Chemistry and Size Matters

- Demonstrate oxidized particles are more toxic
- Ultrafine cytotoxicity and similar genomic responses to aged aerosols
- Influence interventions and regulations based on size and mass

Toxicity estimation

- More realistic analog of human inhalation will change the way in vitro studies are conducted in the field and lab
- Successful establishment of methods and use of novel instrumentation in field
- Used to identify hot spots of toxicity, confirm laboratory findings of drivers of toxicity

Questions? http://vizuete.web.unc.edu