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2. DATA and METHODOLOGY
ELFIN CubeSats:
• In LEO (~450km) over 2019-2022
• 0°–180° local pitch-angle coverage
• 60 keV–6 MeV electron energy range
• 3s time resolution

5. LOSS CONE DISTRIBUTION

3. EXAMPLE of EMIC-DRIVEN PRECIPITATION
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8. CONCLUSIONS

Magnetospheric EMIC (electromagnetic ion 
cyclotron) waves can pitch-angle scatter radiation 
belt electrons into the Earth’s atmosphere 
(precipitation). Our understanding of EMIC-driven 
precipitation is limited by the capabilities of 
available LEO satellites (e.g., POES, FIREBIRD).

1. INTRODUCTION, MOTIVATION, GOALS Figure 1: Wave-driven precipitation

Electron precipitation can influence Space Weather:
• Leads to reduction of the near-Earth radiation environment
• Is a source of energy input into the atmosphere 
• Alters atmospheric ionization, conductivity and chemistry (possibly contributing to ozone 

reduction)
Characterizing the typical properties of EMIC-driven precipitation and its associated ionization rates 
is essential to quantify the Space Weather effects of this phenomenon. We will:

1. Identify the location and radial extent of EMIC-driven precipitation
2. Describe the precipitation efficiency as a function of energy
3. Characterize the pitch-angle distribution inside the loss cone
4. Estimate the ionization rates of EMIC-driven precipitation 

POES/MetOp constellation:
• In LEO (~850km) over 2012-now
• 0° & 90° look directions
• 10s–100s keV proton energy range
• 2s time resolution

Typical signature of EMIC-driven precipitation: ~MeV 
electron precipitation nearby (∆L≤1.5; ∆MLT≤3) proton 
precipitation (well-known signature of EMIC wave activity)

Dataset: 144 precipitation events observed by ELFIN

Ionization rates: estimated using the BERI model (Boulder 
Electron Radiation to Ionization; [1]) with the observed 
averaged ELFIN pitch-angle distribution as input

Figure 2: ELFIN-A: pitch-angle distribution (a-d), trapped (e) and precipitating (f) flux; ratio precipitating-to-trapped (g). 
MetOp-02: proton (h) and electron (i-j) flux at different energies. EMIC waves observed at ground (k).
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EMIC-driven precipitation was observed by ELFIN-A and MetOp-02 in a similar L-MLT region as 
EMIC waves observed at ground. Precipitation was localized and occurred at 100 keV–3 MeV for 
electrons and 10s–100s keV for protons.

4. L-MLT DISTRIBUTION and PRECIPITATION EFFICIENCY

Figure 3: a) distribution of EMIC-driven precipitation from ELFIN (black), FIREBIRD and POES (from [2]); b) efficiency 
of precipitation (ratio precipitating-to-trapped R).

0 5 10 15 20
3

4

5

6

7

8

9

10

MLT [T89]

L 
[T

89
]

Emin < 700 keV
Emin > 700 keVFIREBIRD

POES

ELFIN

0 20 40 60 80 100
% Events

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Emin ≤ 300 keV
Emin ≤ 500 keV
Emin ≤ 700 keV

100 1000

0.1

1.0 25th
50th
75th

Energy [keV]

R
at

io
 R

 =
 J

ne
tp

re
c/J

pe
rp

100 1000
0
20
40
60
80
100
120
140

# 
po

in
ts

a) b) c)

R
at

io
 R

 =
 J

ne
tp

re
c/J

pe
rp

0 5 10 15 20
3

4

5

6

7

8

9

10

MLT [T89]

L 
[T

89
]

Emin < 700 keV
Emin > 700 keVFIREBIRD

POES

ELFIN

0 20 40 60 80 100
% Events

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Emin ≤ 300 keV
Emin ≤ 500 keV
Emin ≤ 700 keV

100 1000

0.1

1.0 25th
50th
75th

Energy [keV]

R
at

io
 R

 =
 J

ne
tp

re
c/J

pe
rp

100 1000
0
20
40
60
80
100
120
140

# 
po

in
ts

a) b) c)

R
at

io
 R

 =
 J

ne
tp

re
c/J

pe
rp

• Precipitation mainly occurs over 15–24 MLT 
and 5–8 L, but also extends towards dawn

• Precipitation is localized (average ∆L~0.3)

• Precipitation occurs from 100 keV–2 MeV, but 
the EMIC-scattering efficiency increases with 
energy
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Figure 4: Pitch-angle distribution averaged from 144 EMIC-driven events (a) and 
from quasilinear simulations using EMIC wave statistics from [3].

• ELFIN’s unprecedented pitch-
angle resolution allows us to 
study the pitch-angle 
distribution within the loss cone

• EMIC waves fill up the loss 
cone with increasing energy

• Loss cone distribution from 
ELFIN’s statistics agrees with 
the distribution obtained from 
quasilinear simulations using 
EMIC wave statistics
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6. BERI INPUTS

Figure 5: Average (left) and median (right) pitch-angle distribution of 144 EMIC-driven events.

• Average and median 
pitch-angle 
distribution of the 
EMIC-driven 
statistics from ELFIN 
are inputs to the 
BERI model (binned 
in 10° pitch-angles)

• Atmospheric density 
averaged on all 144 
events (specifying 
latitude and longitude 
of ELFIN)

BERI tabulates the atmospheric ionization response to electrons (3 keV–33 
MeV), fully accounting for the dependence of ionization production on 
background atmospheric density, electron energy, and pitch-angle.
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7. IONIZATION RATES and DEPENDENCY on PITCH-ANGLE and ENERGY
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Figure 6: a) Atmospheric ionization rates for the average and median ELFIN distribution; ionization peak as a function of 
pitch-angle (b) and energy (c) in black; altitude corresponding to the ionization peak as a function of pitch-angle (b) and 
energy (c).

• Precipitation has a broad peak over 50–80 km

• The ionization peak increases as electrons 
are closer to the loss cone edge and 
increases as electrons are more energetic

• The altitude of the ionization peak has a weak 
dependence on pitch-angle, though more field-
aligned electrons precipitate at lower altitudes

• The altitude of the ionization peak decreases 
with altitude because high-energy electrons can 
penetrate deeper in the atmosphere

• EMIC-driven precipitation is observed by ELFIN mainly over 15–24 MLT and 5–8 L, with a 
higher efficiency >700 keV and weaker at 100s keV

• The BERI model is ideal to apply to ELFIN data, since ELFIN provides great coverage of the 
whole pitch-angle distribution

• EMIC waves drive ionization rates of several 10s to few 100s pairs/cm3/s over a broad 
altitude range (~ 50–80 km)

• The ionization is maximum for electrons at the loss cone edge and with ~MeV energies
• ~MeV electrons determine the highest ionization at ~55 km, while lower energy electrons 

deposit their energy at ~80 km
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