
disturbances (GMD) forecasting.

Single Fluid vs. Multifluid MHD Equations	
 Single Fluid: Protons and electrons No mass separation of other ion species Single energy equation solved No collision allowed Less computational demand 	 Multifluid: Multiple ion species and electrons can be accounted Separate energy equation different ion species More computationally demanding for solving the MHD multiple times
$\begin{split} \frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{u}) &= 0\\ \rho_m \frac{\partial \mathbf{u}}{\partial t} + \rho_m \left(\mathbf{u} \cdot \nabla \right) \mathbf{u} + \nabla p &= \rho_m \mathbf{g} + \mathbf{j} \times \mathbf{B}\\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times \left(\mathbf{u} \times \mathbf{B} \right) &= -\eta_m \nabla^2 \mathbf{B}\\ \frac{3}{2} \frac{\partial p}{\partial t} + \frac{3}{2} \left(\mathbf{u} \cdot \nabla \right) p + \frac{5}{2} p \left(\nabla \cdot \mathbf{u} \right) &= \frac{1}{\overline{\sigma}_0} j^2 \end{split}$	$\begin{aligned} \frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s) &= S_{\rho_s}, \\ \frac{\partial \rho_s \mathbf{u}_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s \mathbf{u}_s + Ip_s) &= n_s q_s \left(\mathbf{u}_s - \mathbf{u}_s \right) \\ \frac{n_s q_s}{n_e e} \left(\mathbf{J} \times \mathbf{B} - \nabla p_e\right) + \mathbf{S}_{\rho_s u_s}, \\ \frac{\partial p_s}{\partial t} + \nabla \cdot (p_s \mathbf{u}_s) &= -(\gamma - 1) p_s \nabla \cdot \mathbf{u}_s + S_{p_s} \\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u}_+ \times \mathbf{B}) &= 0, \\ \text{Toth et al., 2009} \end{aligned}$

Impact of Single Fluid and Multi-fluid MHD on GMD Forecasting: An Inner Boundary Condition Sensitivity Study

¹Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, USA

