

1.0 NAIRAS Model Description

- Nowcast of Aerospace Ionizing RAdiation System (NAIRAS) Model - Running in real-time on LaRC computer cluster since 2011, results hosted on Space Environment Technologies server/website
- Key Model Features
- Global ionizing radiation environment model

- New/Current Model Development
- Improved SEP dose nowcast and forecast
- Single-Event Effects (SEE) radiation risk assessment quantities

2.1 Real-Time Aviation Radiation Dose

(ISS) Effective Dose

NAIRAS Model Updates and Improvements to the Prediction of Ionizing Radiation from Earth's Surface to Cislunar Environment

Christopher J. Mertens¹, Guillaume P. Gronoff¹, Yihua Zheng², Janessa Buhler³, Emily Willis⁴, Maksym Petrenko², Daniel Phoenix¹, Insoo Jun⁵, and Joseph Minow⁴ ¹NASA Langley Research Center, Hampton, VA, USA; ²NASA Goddard Space Flight Center, Greenbelt, MD, USA; ³NASA Kennedy Space Center, FL, USA; ⁴NASA Marshall Space Flight Center, Huntsville, AL, USA; ⁵Jet Propulsion Laboratory, Pasadena, CA, USA

Table: RoR Capability Summary and Description

Run Option	Output Quanti	ties	User Input
Global Dosimetric	Absorbed dose in silicon, absorbed dose in tissue, dose equivalent, ambient dose equivalent, effective dose		Start/End Date-Time
	Dosimetric & Flux/Fluence		Trajectory file (date/time/lat/lon/alt)
	Dosimetric	Same as global run	Shielding depths for dosimetric calculations
Flight Trajectory			Shielding depths for flux/fluence calculations
	Flux/Fluence	Integral•GCR LET•SEP proton•TRP proton	Lower LET/energy bounds of integral quantity
		Differential• GCR LET• SEP proton• TRP proton	N/A (full model differential spectra written to output)

ose 'n)	Dose Equivalent (uSv/h)	Effective Dose (uSv/h)
	9.5782	14.6006
2	8.7183	18.9210
	9.86	-22.83

4.0 Improved SEP Modeling

New Approach

• Fit spectrum to GOES integral proton flux rather than differential flux measurements

- Benefits
- Improved robustness Difficulty fitting GOES differential channels at event onset and for weak-to-moderate events
- Extrapolation beyond highest differential energy channel (~500 MeV) requires introducing arbitrary and subjective
- 50% or more of SEP effective dose at large material depths (aviation altitudes) comes from > 500 MeV protons
- Preliminary simulations using neutron monitor data suggest fitting to GOES integral proton flux may better represent the relativistic protons during GLEs
- > New integral flux fitting approach provides a pathway to develop a SEP proton spectrum forecast

SEP Heavy-Ion Model

5.0 Summary

- Major NAIRAS Code Deliverables to CCMC • NAIRAS Real-Time Global Dosimetric Quantities (**Publicly Available Now**) • NAIRAS RoR Capability (**Publicly Accessible**) • NAIRAS Improved SEP Proton Spectral Fitting Algorithm (Fully Implemented)
- Significant Improvements and Extensions to NAIRAS Model • NAIRAS predictions now include both dosimetric quantities to assess human radiation exposure and differential/flux quantities to assess SEEs in avionic system
- NAIRAS dose comparisons to measurement data: < 30% for all dosimetric quantities at altitudes from 0-40 km (RaD-X data and ARMAS aircraft data)
- SEP Heavy-Ion Model & SEP Dose Forecast Model Under Development:

3.3 RoR High-Altitude Balloon Dose

NASA Radiation Dosimetry Experiment (RaD-X) Balloon Flight

SEP proton spectrum (black line) fit to GOES integral flux and comparison to GOES differential proton flux. Horizontal blue line indicates NOAA/SWPC SEP event threshold for >10 MeV proton flux.

Under Development

UMASEP-NAIRAS SEP Forecast

proton flux forecast issue time