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How to Choose a Grid Resolution for FDTD Models Applied to GICs 
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 Whenever the ground composition varies
in the horizontal direction, then the
horizontal (not just the vertical) grid
resolution of the FDTD model must be <
1/3 of a skin depth. This is necessary
because the electromagnetic waves
propagating from the disturbed
ionospheric currents are not true plane
waves; the ground is in the near field of
the ionospheric current sources.

 When variations in the ground structure
are included (such as those predicted by
regional and global ground models, e.g.,
[3]) the resolution of the FDTD models
should be at least three times higher than
the ground model resolutions. This allows
the FDTD models to more accurately
account for the diffraction of
electromagnetic waves around the
ground structures in the near field of the
ionospheric sources.

In the interest of maintaining both civilian and military
infrastructure, it is important to protect electric power grids,
smart grids, low-voltage internet of things, and other
electrotechnologies from known and possibly as-of-yet
unknown space weather hazards. The finite-difference time-
domain (FDTD) method is a robust and versatile method that
has already been applied to the study of geoelectric fields
and geomagnetically induced currents. The advantages of
FDTD over other methods are that it can account for more
geometrical complexities and realistic time waveforms. For
example, it can account for the 3-D variations of the
lithosphere composition and ocean-continent boundaries. It
can also account for complex 3-D ionospheric currents.
Previously, when applied to GICs, FDTD grids with relaxed grid
resolutions in the horizontal direction were utilized for
computational efficiency ([2], [4], [5]), since Snell’s Law
predicts that any electromagnetic waves should be
propagating straight downwards into the low resistivity
ground even when the electromagnetic waves are incident
from a grazing angle with the ground. We investigate
whether this assumption is correct and find that for accuracy,
the horizontal (not just vertical) grid resolution should be
<1/3 of a skin depth or <1/3 the size of each ground feature.
We then propose a solution that may be applied to FDTD
models on either a regional or global scale in order to
maintain these requirements.

Conclusions

 Solves Maxwell's equations in time and 
space

 Grid-based Time-domain method
 Computes the electric field directly, rather 

than calculating them from magnetic 
fields as for many space weather 
approaches

Fig: One grid cell of the 3-D FDTD model([1])

Fig: Physics at ocean-continent interface 
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