Dusan Odstrcil (GMU and NASA/GSFC)

OUTLINE

- images in simple hypothetic ensemble run?
- observations?

PUNCH 4 Science Meeting, Boulder, Colorado, July 6-7, 2023

Improving the CME Forecasting by Heliospheric Imagery and Ensemble Modeling

Currently used heliospheric model for operational forecasting

Can heliospheric imagery see differences in synthetic white-light

Can synthetic white-light images be compared with STEREO-HI

Currently Used Forecasting Scheme at NOAA & NASA — Single ENLIL Run

- heliospheric code
- modeling system
- & coronal mass ejections (CMEs), event-by-event, much faster than real-time
- magnetograms) and Cone model (uses SOHO and STEREO coronagraph CME observations)
- **Operational predictions since 2010**

ENLIL is implemented and used at: NOAA/SWPC, NASA /CCMC, UK/MetOffice, Korean Space Weather Center, and Australian Bureau of Meteorology

Predictions of the Arrival Time at Earth — NCEI Archive & CCMC Scoreboard

No	Error (h)	WSA Vers	GONG	Mode	ENLIL Vers	Res	Ambient Params	CME Launch	Lat (deg)	Lon (deg)	Rmaj (deg)	Vcld (km/s)	Ejecta Params	CME Method	Submitted I
P1	-32.28	2.2	mrbqs	Single	2.6	med	a8b1	28T16:42	-10	1	45	1477	d4t1x1	Cone (SWPC)	Duty Forec (SWPC)
P2	-28.22	2.2											d4t1x1	Cone (BoM)	Duty Forec (ASFC)
P3	-19.22	2.2												Cone (SWPC)	Robert Lop (M2M Offic
P4	-17.22	4.5	mrzqs	single	2.7	low	a3b2	28T16:00	-20	1	52	1200	sa1	Cone (MOSWOC)	Duty Forec (MOSWOC
P5	-16.32	2.2			2.7	low	a3b1f	28T17:52	-17	0	49	1109	d4t1x1	Cone M2M)	Robert Lop (M2M Offic
P6	-15.97							28T17:53	-17	0	49	1109		Cone (M2M)	Anna Chula (M2M Offic

- 4 forecasting centers predicted too early CME arrival
- Simulated CME propagated in "false" fast near-equatorial stream that caused faster CME propagation

Proposed Forecasting System with Ensemble Runs & Inclusion of HI Data

NASA R202R Project: D. Odstrcil, C. de Koning, J. Zhang, In collaborations with: E. Adamson, L. Barnard, J. Davies, C. DeForest, S. Gonzi, L. Mays, M. Owens, and V. Pizzo

- FCST-1 like current FCST-0 but with ensemble runs for range of uncertainty
- FCST-2 if HI observations to suggest the relevant run and/or to prune bad ensemble members
- FCST-3 revised model initiation & ensemble runs

CASE 1: N00W00, Rmaj=30, Vcme=600

CASE 2: N10W00, Rmaj=30, Vcme=600

CASE 4: N00W00, Rmaj=20, Vcme=600

- SW radial velocity is shown when a hydrodynamic ejecta passes the computational boundary at 0.1 AU
- Reference Case 1 and variations of the cone model parameters (Cases 2-6) are used for computations

Simple CME Ensemble — Boundary Values at 0.1 AU

CASE 3: N00W20, Rmaj=30, Vcm

CASE 5: N00W00, Rmaj=40, Vcme=600

ne=600					
	+ 0.17 day	/S			
	+12	0 ⁰			
	HeldWeat	her			
		her			
ne={	500	her			
ne={	+ 0.21 day	her /S			
1e={	+ 0.21 day	/S			
1e={	+ 0.21 day	/S			
1e={	+ 0.21 day	/S			
1e={	+ 0.21 day	//S			
1e={	+ 0.21 day	/5			
1e={	+ 0.21 day	/5			
1e={	+ 0.21 day	her /S			

HelicWeather

Simple CME — SW Density & Synthetic WL Image

- CME propagates to P01 and WL is calculated for P02
- Synthetic imaging can differentiate between those structures but this is more challenging

• Heliospheric computations can show the CME ejecta and surrounded sheath (SW compressed by a CME-driven shock)

Simple CME Ensemble — Synthetic WL J-Maps

CASE 1: N00W00, Rmaj=30, Vcme=600

CASE 2: N10W00, Rmaj=30, Vcme=600

CASE 4: N00W00, Rmaj=20, Vcme=600

CASE 5: N00W00, Rmaj=40, Vcme=600

- Blue crossing lines are at elongation = 24 deg (outer range of HI-1A) and time = 01T01
- Only Case 6 visibly differs from the reference Case 1

CASE 3: N00W20, Rmaj=30, Vcme=600

CASE 6: N00W00, Rmaj=30, Vcme=500

• This corresponds to the leading edge of the WL disturbance for the Case 1 and its position is the same on all panels

Simple CME Ensemble — Synthetic WL P-Maps (at elongation=15^o)

- Blue crossing lines are at phase = 270 deg, equatorial plane) and time = 00T03
- In addition to later arrival in Case 6, an effect of the latitudinal position and ejecta width can be seen too

• This corresponds to the leading edge of the WL disturbance for the Case 1 and its position is the same on all panels

CASE 1: N00W00, Rmaj=30, Vcme=600

CASE 2: N10W00, Rmaj=30, Vcme=600

CASE 4: N00W00, Rmaj=20, Vcme=600

CASE 5: N00W00, Rmaj=40, Vcme=600

- CME 6 arrives later by ~9.5 hours Difference from Case 1 can be clearly seen in WL imagery
- CME 4 arrives later by ~ 2.5 hours Difference from Case 1 can be barely seen in WL imagery
- CMEs 2 and 5 arrive at about the same time as Case 1 Observer is within the shock-driving ejecta

Simple CME Ensemble — Evolution & Shock Arrival at 1 AU

02T18:3 400 02T18:3 z TIME (days) TIME (days) www.iwww.ipode.com/activation/categorial-within-teal-w

CASE 6: N00W00, Rmaj=30, Vcme=500

• CME 3 arrives later by ~2.5 hours — Difference from Case 1 can be hardly seen in WL imagery

CASE 3: N00W20, Rmaj=30, Vcme=600

CME 2021-10-28 — Predicted SW Velocity (2 Cases)

ENLIL + GONGz-WSA22t + Cone / a3b2-g53x05 / d4t1vrp2q-202110 / mcp3um1d / med HelioWeather

ENUL + GONGz-WSA52t + Cone / a6b1-g53x05 / d4t1vrp2g-202110x / mcp3um1d / med HelioWeather

CME 2021-10-28 — Synthetic (2 Cases) and Observed WL Images

Case 1

- Observed CME has highly irregular structure and this complicates comparing with J-maps

Case 2

Observed

• Synthetic WL images show a leading edge of CME-driven disturbances that can be compared with the observed image • Case 1 has much more advanced disturbance than (seen also relative to Mercury) and should not be used for predictions

CME 2021-10-28 — Synthetic (2 Cases) and Observed WL Jmaps & Pmaps

Case 1 — Pmap

- Dashed vertical cyan lines show the synthetic WL structure at the same elongation and phase
- Case 1 (Case 2) are detected by 2-3 (0.5-1) hours earlier than observed

Case 2 — Pmap

Observed — Pmap

• Dashed vertical magenta lines show the observed WL structure at elongation=15⁰ (J-maps) and phase=270⁰ (P-maps)

		-
		-
		-
	-	-
111	11111	
2 FT	LILIAN	30100

