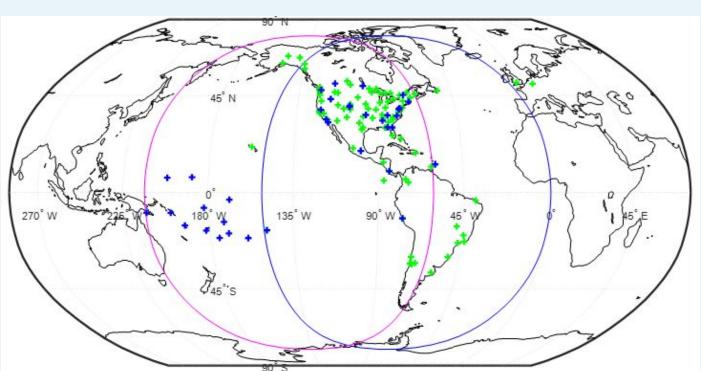
GOES Data Collection System (DCS) RF Data as a Space Weather Data Source

Daniel Gillies, NOAA NESDIS GEO - GOES-R & GeoXO Deputy Program Systems Engineer, Greenbelt, MD William 'Skip' Dronen Jr., NOAA NESDIS OSPO - DCS Program Manager, Suitland, MD


What is DCS?

Since 1975 (GOES-1), NESDIS has managed the U.S. Data Collection System (DCS). DCS is a system consisting of in-situ data collection platforms (DCPs) that collect environmental information, transmit the data to NOAA GOES spacecraft over UHF, which then relays it back to Earth on L-band to NOAA and user direct readout ground stations. The system also supports platform commanding via a UHF downlink from GOES.

The DCS coverage area covers the majority of the Western Hemisphere with UHF receive/transmit and L-Band transmit supported down to a 5-degree elevation angle to each equatorial GOES East and West spacecraft.

DCS Transmission Characteristics

- **~1 million** messages per day
- Transmitters Meet NOAA Certification Requirements
 - 401.7-402.4 MHz Narrowband Channelized Transmissions
- Nominal Channel BW: 750 Hz (300 bps) 2250 Hz (1200 bps)
- EIRP: 37-41 dBmi (300 bps); 43-47 dBmi (1200 bps)
- Timing Accuracy: Max 250ms deviation
- Long Term Frequency Stability: ± 125 Hz (all conditions)
- Short Term Frequency Stability: ± 1 Hz/s for 10ms 110s • Short Duration Transmissions: 5-15 seconds, typically hourly
- Continuous Pilot Signal for Frequency & Amplitude Reference

Country

US & Terr

Canada

Brazil

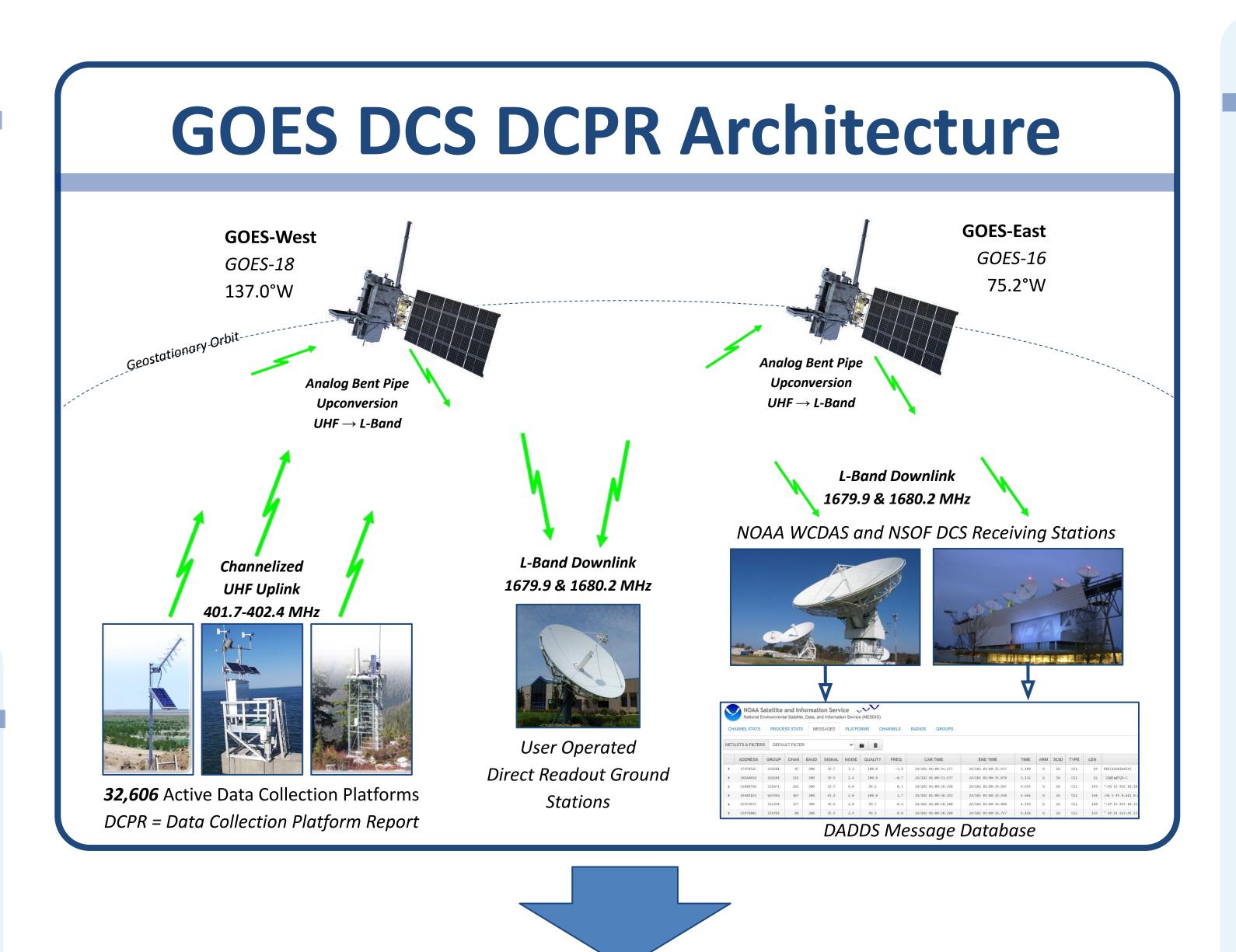
Chile

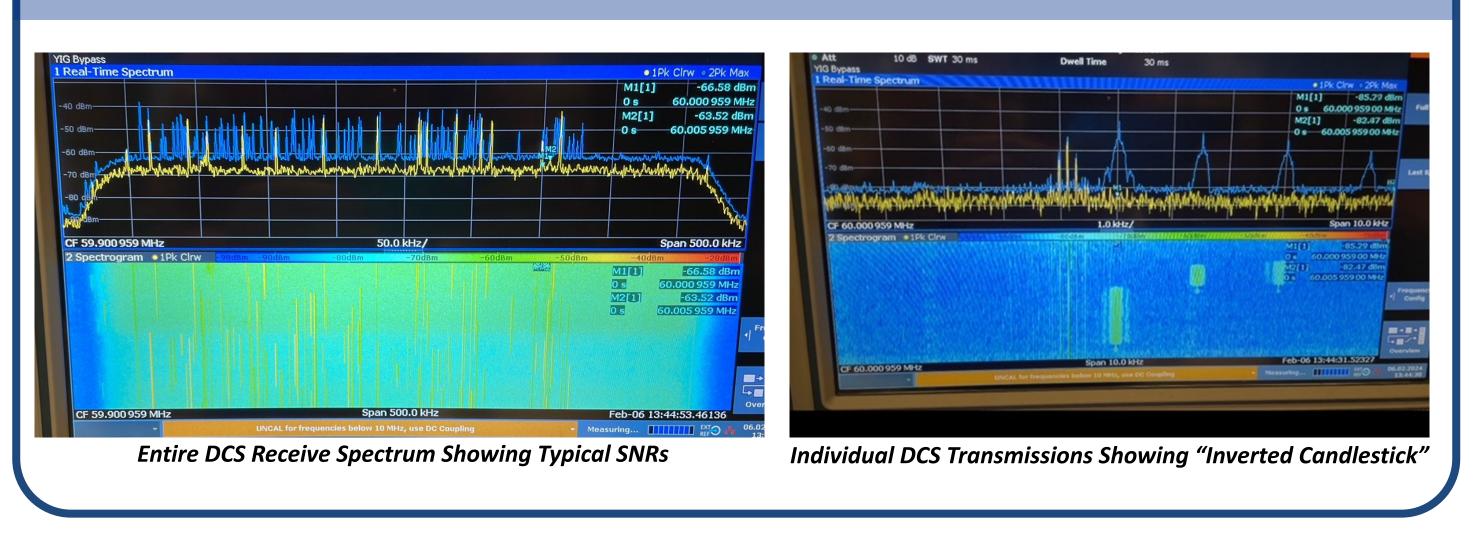
Mexico

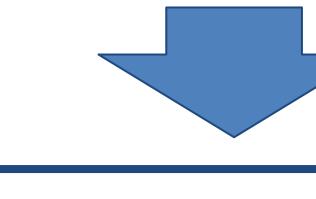
GOES East/West Coverage Areas (>5 deg elevation)

Example of CONUS DCS Distribution Density

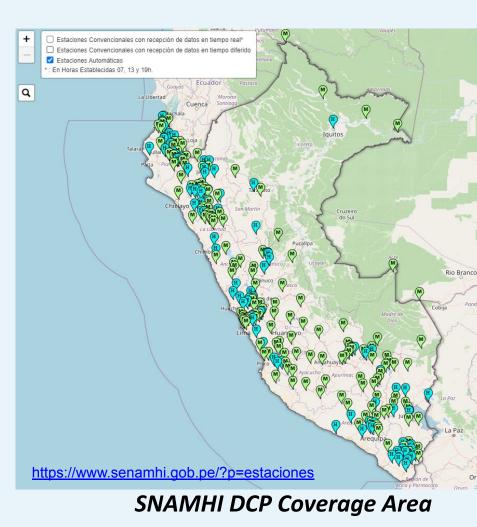
DCS for Space Weather

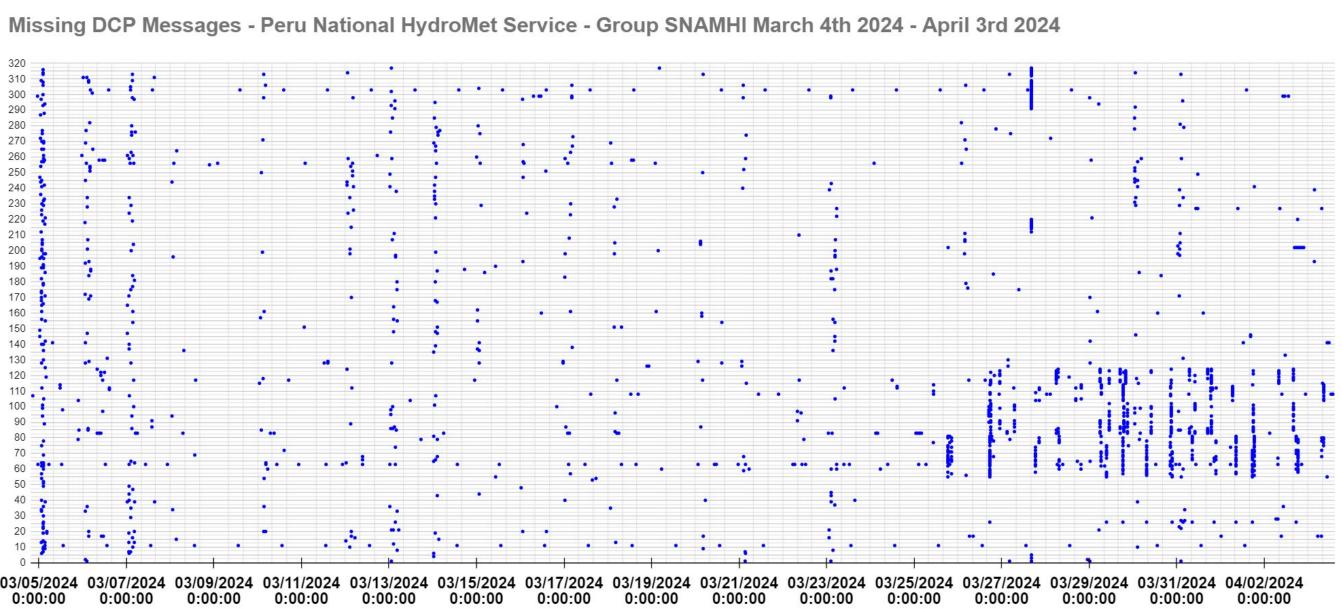

- The GOES Data Collection System (DCS) could provide a new data source to support RF amplitude scintillation monitoring product by measuring DCS transmission signal & message characteristics (SNR, message loss, parity errors)
- Any DCP transmission could serve as a potential measurement path; Data is freely and openly available and will continue into the GeoXO era (2050s)
- DCP UHF transmissions could serve as an improved proxy compared to L-Band signals (i.e. GNSS) for VHF & HF scintillation effects to support future SWPC/ICAO aviation space weather product needs


Name	Active DCPs
itories	22612
	4596
	1522
	781
	766


Top 5 DCP Countries

DCS Signal Receipt at NOAA


DCS Administration & Data Distribution System

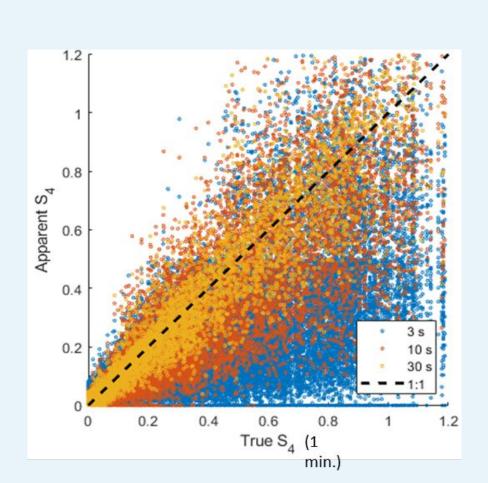

ADDRESS	GROUP	CHAN	BAUD	SIGNAL	NOISE	QUALITY	FREQ	CAR TIME	END TIME	TIME	ARM	SCID	TYPE	LEN	
4721725E	SNAMHI	67	300	39.2	2.3	100.0	-0.1	24/102 00:30:00.320	24/102 00:30:04.527	4.207	G	16	CS2	127	@AZ@AL@AE@AE@AF@AH@AZ@As@Bx@@^@A^@AJ@Ad@@o@@i@Bc@.
4721725E	SNAMHI	67	300	38.8	2.5	99.8	-1.8	24/101 23:30:00.307	24/101 23:30:04.527	4.222	G	16	CS2	127	@BL@BG@BB@Aw@Ag@A[@BL@BR@Bx@@^@@{@@x@Ad@@o@@f@EY@.
4721725E	SNAMHI	67	300	39.8	2.2	100.0	-3.0	24/101 22:30:00.313	24/101 22:30:04.527	4.213	G	16	CS2	127	@BT@BT@BR@BR@BU@BP@BT@BV@Bx@@^@@x@@v@Ad@@o@@r@ED@
4721725E	SNAMHI	67	300	41.2	2.2	100.0	-4.5	24/101 21:30:00.313	24/101 21:30:04.527	4.214	G	16	CS2	127	68.68A68M68168A68A68.68768x66,06766A66069160
4721725E	SNAMHI	67	300	41.5	2.1	100.0	-4.8	24/101 20:30:00.313	24/101 20:30:04.527	4.213	G	16	CS2	127	@BJ@BT@B_@Bb@Bk@Bg@BJ@BP@Bx@@^@AA@@~@Ad@@i@@s@ED@
4721725E	SNAMHI	67	300	0.0	0.0	0.0	0.0	24/101 19:30:00.000	24/101 19:30:05.000	5.000	М	9	N/A	369	DADDS: PLATFORM [4721725E] OWNER [SNAMHI] LOCATI.
4721725E	SNAMHI	67	300	41.1	2.0	100.0	-5.0	24/101 18:30:00.293	24/101 18:30:04.527	4.234	G	16	CS2	127	@Bn@Bj@B_@B`@B[@BT@Bn@Bj@CS@@^@@y@@x@Ad@@f@@f@DY@.

ninistration and Data Distribution System (DADDS) illustrating "Good" and "Wissed" message statistics. DADDS will also report parity errors, timing errors, and other message and signal characteristics.

Interested in Collaboration? Contact Information: daniel.gillies@noaa.gov

DCS Message Dataset Example Peru's SERVICIO NACIONAL DE METEOROLOGIA E

Challenges & Opportunities


- Short nature of DCS transmissions poses challenge for correlating apparent DCS signal scintillation to True amplitude scintillation effects (S₄)
- May be overcome by temporal & spatial density of transmissions or new analytical methodologies
- GOES 'Bent Pipe' may complicate transmission to measurement correlations
- Spacecraft telemetry & additional test data may help ground assumptions
- - HRIT/EMWIN

Special Acknowledgement to the Boston College Institute of Scientific Research: Keith Groves, Alan Hoskinson, Theodore Beach, Charles Carrano & John Retterer *MIT Lincoln Labs:* Hannah Binney, Gregory Ginet & Monica Coakley & *Microcom Design:* Brett Betsill

HIDROLOGIA SENAMHI (Peruvian HydroMet Service)

- > 300 DCPs Across Peru \rightarrow 317 Pulled for Example
- March 4th April 3rd 2024
- 253388 Total Messages (5-10 Second Transmissions)
- 7949 Missed Messages (Message Not Received) **Removed platform malfunctions** \rightarrow 1393 missed
 - messages
- Plots show potential patterns visible in message statistic data

• Platform IDs are not geographically ordered in plots • Parity error plots (not shown) illustrate similar patterns

Apparent vs. True S, w.r.t. Transmission Length (Provided by Boston College Institute for Scientific Research - T. Beach 2024)

• Other GOES RF 'Datasets of Opportunity' May Exist Beyond DCPR • DCS Commanding: Fixed Gain Hemispherical UHF (468 MHz) Transmission Receiver is under development; Could consider monitoring functionality • L-Band Hemispherical Broadcasts for DCS, GOES Rebroadcast (GRB) and

> Poster Number: 15 Download a Copy \rightarrow 2024 Space Weather Workshop April 15th to 19th, 2024 Boulder, Colorado

