Space Weather Workshop 2024

Predicting Solar Energetic Particle Event Occurrences Using Explainable AI

We conducted a classification task using Wide Learning[™], an explainable AI developed by Fujitsu, to explore the conditions of Solar flares with/without SEP Events. We created 57 features from GOES and SDO satellites data and the physics-based three-dimensional extrapolated magnetic fields developed by Kusano et al. (2020). We classified Solar flares that meet > 10 MeV, > 10 pfu in the NOAA SWPC database during Solar Cycle 24 as positive samples, and all other \geq C1.2 Solar flares as negative samples. We conducted 100 trials with random replacements and our model demonstrates a True Skill Statistic (TSS) approximately about 0.4. For positive flares, we identified multiple useful conditions with numerical ranges which consist of the longitude, duration time, and history of SFs. These results indicate the potential for real-time step by step SEP Event alerts and the ability to reference past cases that align with identified conditions.

1.Introduction

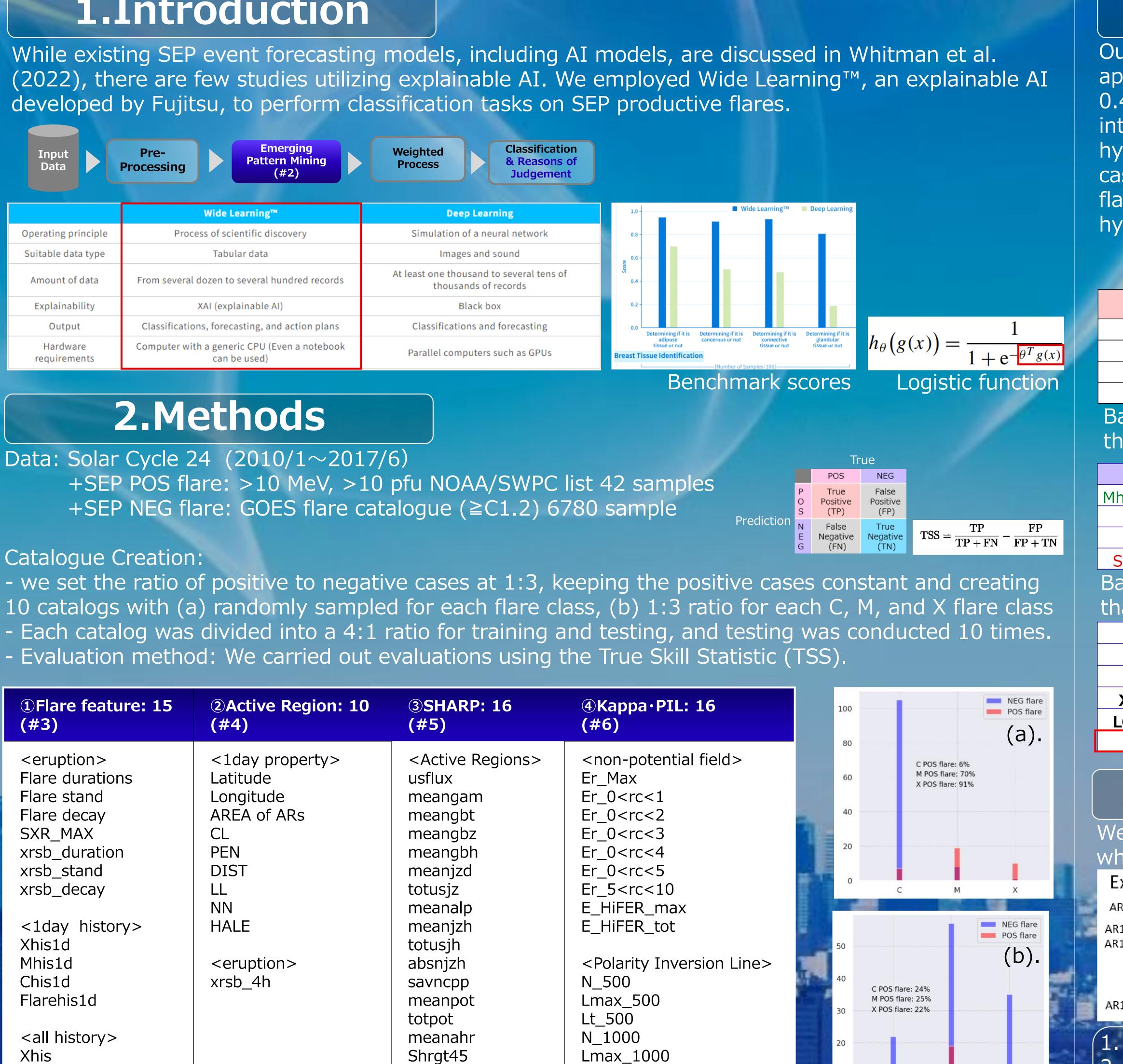
While existing SEP event forecasting models, including AI models, are discussed in Whitman et al. (2022), there are few studies utilizing explainable AI. We employed Wide Learning[™], an explainable AI developed by Fujitsu, to perform classification tasks on SEP productive flares.

Input Data	Pre- Processing Pattern Mining (#2)	Weighted Process Judgen			
	Wide Learning™	Deep Learning			
Operating principle	Process of scientific discovery	Simulation of a neural network			
Suitable data type	Tabular data	Images and sound			
Amount of data	From several dozen to several hundred records	At least one thousand to several ter thousands of records			
Explainability	XAI (explainable AI)	Black box			
Output	Classifications, forecasting, and action plans	Classifications and forecasting			
Hardware requirements	Computer with a generic CPU (Even a notebook can be used)	Parallel computers such as GPU			

2.Methods

Data: Solar Cycle 24 ($2010/1 \sim 2017/6$) +SEP POS flare: >10 MeV, >10 pfu NOAA/SWPC list 42 samples +SEP NEG flare: GOES flare catalogue (\geq C1.2) 6780 sample

Catalogue Creation:

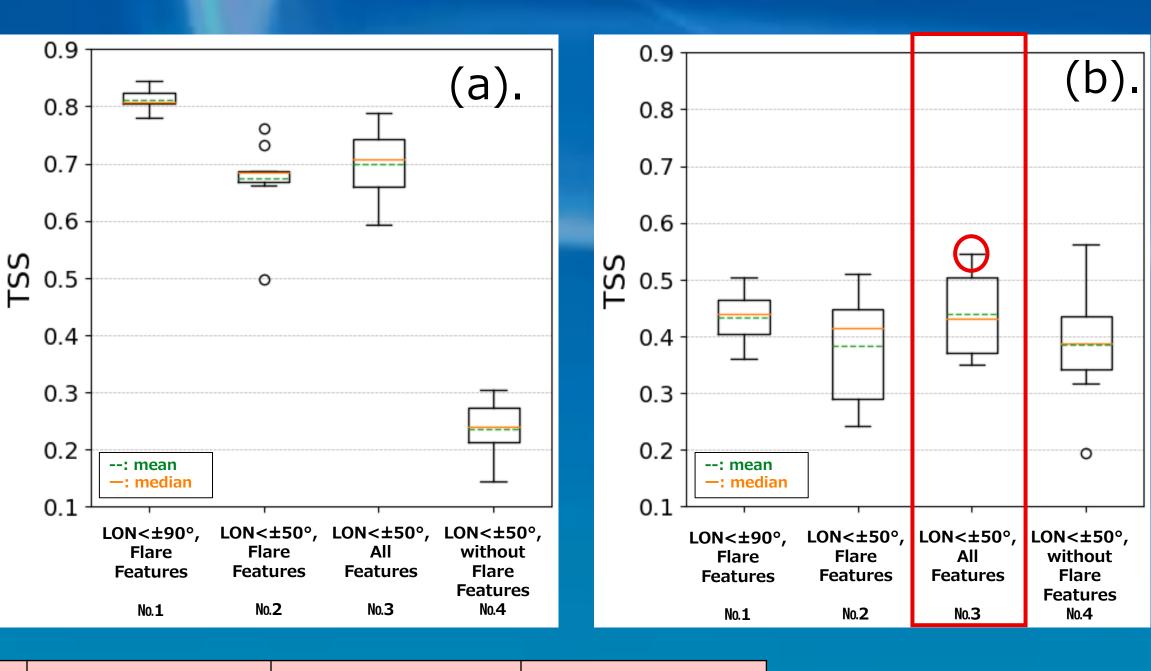

- we set the ratio of positive to negative cases at 1:3, keeping the positive cases constant and creating

- Evaluation method: We carried out evaluations using the True Skill Statistic (TSS).

1 Flare feature: 15 (#3)	<pre>②Active Region: 10 (#4)</pre>	③SHARP: 16 (#5)
<eruption> Flare durations Flare stand Flare decay SXR_MAX xrsb_duration xrsb_stand xrsb_decay <1day history> Xhis1d Mhis1d Chis1d Flarehis1d <all history=""> Xhis Mhis Chis Flarehis</all></eruption>	<1day property> Latitude Longitude AREA of ARS CL PEN DIST LL NN HALE <eruption> xrsb_4h</eruption>	<active regions=""> usflux meangam meangbt meangbz meangbh meanjzd totusjz meanalp meanjzh totusjh absnjzh savncpp meanpot totpot meanahr Shrgt45</active>
Flare decay SXR_MAX xrsb_duration xrsb_stand xrsb_decay <1day history> Xhis1d Mhis1d Chis1d Flarehis1d <all history=""> Xhis Mhis</all>	AREA of ARS CL PEN DIST LL NN HALE <eruption></eruption>	meangbt meangbz meangbh meanjzd totusjz meanalp meanjzh totusjh absnjzh savncpp meanpot totpot meanahr

FUITSU Institute for Space-Earth Environmenta Research

Summary


Lt_1000

Yuta Kato, Kanya Kusano, Chihiro Mitsuda, Yasuhide Ishihara¹ 2. Institute for Space-Earth Environmental Research, Nagoya University, Aichi, Japan

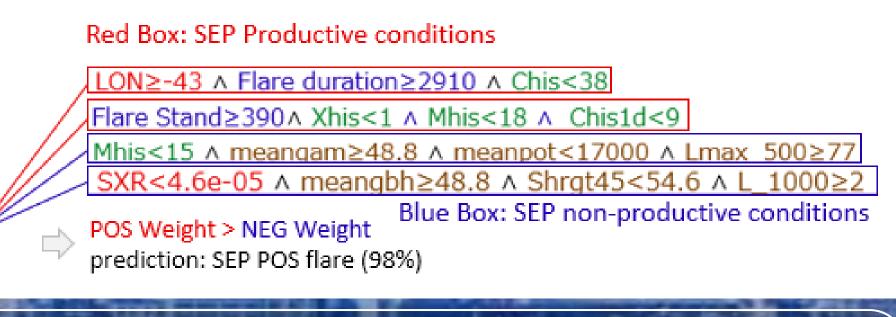
1. Cross Industry Business Office, Solution Transformation Unit, Fujitsu Limited, Kanagawa, Japan

3.Results

Our model demonstrates a TSS of approximately 0.8 for case (a), and about 0.4 for case (b). In case (a), the X-ray peak intensity emerged as a significant weighted hypothesis for positive examples, while in case (b), the flare longitude, duration and flare history emerged as significant weighted hypotheses.

SEP Positive flare conditions (b-No.3. TSS=0.55)							weight	t P	OS samples	NEG sam	ples					
	LON≥-43 ∧ Flare duration≥2910 ∧ Chis<38							1.03		13/17	0/39					
LON≥-43 ∧Flare Stand≥390 ∧ Xhis<1 ∧ Chis1d<9										17/17	11/39	9				
Fla	are Stan	d≥390/	∧ Xhis<	1 ∧ Mhi	s<18 ^	Chis1d<9		0.55		17/17	12/39	9				
LC	N≥-18	∧ Flare	Stand≥	<u>390 ^ X</u>	his<1 ^	Chis1d<9		0.52		16/17	7/39					
Based on the training data, we identified 1148 important combinations out of approximately 6 billion											billion					
hat re	hat represent positive cases and weighted 6 conditions as useful for prediction (displaying the top 4).															
SEI	P Negat	ive flar	e cond	itions (b-No.3. TS	SS=0.55)	weight	t N	EG samples	POS sam	ples				
lhis<15	∧ mean	gam≥4	8.8 ^ n	neanpot	<17000	∧ Lmax_5	00≥77	-1.86 33/39		33/39	0/17					
Chis<5	58 ^ me	angam	<59.2 ^	meang	jbz≥98.0	∧ N_100	0≥2	-1.08 36/39 1/17								
F	are dura	ation<2	910 ^ 🛚	N_500<	180 ^ N_	_1000≥2		-1.06		34/39 0/17						
SXR<4.6e-05 \land meangbh \geq 48.8 \land Shrgt45<54.6 \land L_1000 \geq 2						00≥2	-0.68		30/39 0/17							
based on the training data, we identified 1005 important combinations out of approximately 6 billion									billion							
nat rep	oresen	t neg	ative	cases	and we	eighted	23 cor	nditions	as us	seful for pr	ediction	dis (dis	splaying th	ne top 4).		
	ТР	FP	FN	TN	ACC	F1	Prec.	Rec.	AUC	PC	TSS	HSS	6 POD	FAR		
LR	211	117	189	993	0.80	0.54	0.60	0.53	0.80	79.80	0.42	0.43	0.53	0.40		
RF	197	117	203	993	0.79	0.53	0.62	0.49	0.81	78.80	0.39	0.41	0.49	0.38		
XGB	227	178	173	932	0.77	0.55	0.57	0.57	0.77	76.79	0.41	0.40	0.57	0.43		
LGBM	240	199	160	911	0.76	0.56	0.55	0.60	0.77	76.31	0.42	0.40) 0.60	0.45		
WL	224	135	176	975	0.79	0.56	0.62	0.56	0.80	79.44	0.44	0.44	0.56	0.38		

Skill scores with b-No.3 100 random replacements


4.Discussion

We can predict SEP event occurrences with each POS/NEG fitted condition and refer past similar cases, which indicate the potential for materials to consider real-time step by step SEP event alerts. Examples).

.R\Cond	dition	I	Nº.1		Nº.2		Nº3			Ν	l⁰.N	NEG Prol	o. POS Prob.	Past similar cases	
R13xxx	54	0	1	0	1	0	1	0	1	8	0	1.00	0.00	AR11xxx(№.1,2,3)	
R13xxy	39	0	1	0	1	0	1	0	1	8	0	0.99	0.01	AR11xxx(№.2,3,4)	
• • •	38	0	1	0	1	\bigcirc	1	0	1	8	0	0.91	0.09	AR11xxx(№.3,4,5)	
	20	8	0	8	0	\otimes	0	8	0	8	0	0.02	0.98	AR11429(№.6,7,8)	P
R13xxz	68	8	0	8	0	8	0	8	0	8	0	0.97	0.03	AR11xxx(№7,8,9)	
	-					-			_		-				

1. Whitman et al. (2022) 2. Iwashita et al. (2020) 3. <u>ftp://ftp.swpc.noaa.gov/pub/warehouse</u> 4. Marroquin et al. (2023)

Solar and Interplanetary Research and Applications

Contact: kato.yuta@fujitsu.com