Al-Based lonospheric Scintillation Impact Prediction

Ryan Kellyt, Jack Ziegler?, lan Collett!, Ryan Nguyen?

1 Orion Space Solutions

ORION

SPACE SOLUTIONS

an Arcfield company

OVERVIEW

We built lonospheric Scintillation Impact Prediction Al
(ISIP.Al), a novel tool that leverages machine learning (ML)
to enhance the accuracy of nowcasting and forecasting
lonospheric scintillation at L-band frequencies in the low-
latitude ionosphere. ISIP.Al utilizes observations of
lonospheric irregularities and scintillation along satellite-to-
satellite links to predict scintillation for space-to-ground links.
ISIP.Al attempts to estimate the maximum amplitude
scintillation (S4) over specified timespans or at each minute.
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RADIO OCCULTATION
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have around 120 active RO links.

link geometry

LISN GROUND STATION DATA

This effort utilizes satellite radio occultation (RO) observations
as well as ground-based observations from the Low-latitude
lonospheric Sensor Network (LISN). We processed all
avallable LISN data from three ground stations in the year
2022. LISN measures S4 and TEC along established GNSS
links at a one-minute cadence.
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Figure 2: LISN observations per day in 2022. Figure 3: LISN S4 distribution.

MODEL SELECTION STRATEGY

We explored three classical ML models and two DL-based models
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RESULTS - COMPARED WITH WBMOD

The Wide Band MODel (WBMOD) Is an established climatological

software tool that can

be used to estimate the scintillation parameters

S4 and sigma phi along with their errors. The WBMOD is based on
extensive datasets covering both the equatorial region and high
latitudes. We compare our GNN model results with WBMOD evaluated
at the three LISN ground stations, over a 10-day period of high
scintillation in 2022. Note that while our model had better testing metrics
when compared on the entire sample set, the WBMOD outperformed
our model on the subset of samples who's true S4 was larger than 0.2.

GNNModel Error __MSE | RMSE __MAE R’ _

Train
Test

Tabl

0.0253 0.2362
0.0227 0.2899

e 1. Graph Neural Network evaluation metrics.
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GNN Model Error When
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True S420.2

Traln

-3.3071
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Table 2: Graph Neural Network evaluation metrics on samples with high S4.

WBMODError  MSE___RMSE__MAE __R®

Full Set

True S420.2

-1.6617
-2.7506

0.00627 0.0792 0.0656
0.0392 0.1981 0.1589
Table 3: The WBMOD evaluation metrics.

CHALLENGES AND FUTURE IMPROVEMENTS

Scintillation impact Is

a local phenomena requiring a large volume of

measurements to accurately estimate; we plan to incorporate more data

sources as model inp

uts. The occurrence of S4 large enough to cause

scintillation Is rare, causing severe class imbalance and biased ML

models.
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