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l. A Brief Introduction
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Currently, there is no tool available worldwide that can predict changes in solar irradiance when a solar flare occurs.

In this study, we have developed a deep-learning model that can immediately predict changes in solar irradiance from the
X-ray to the EUV, from the onset of a solar flare to three hours afterward.
The deep learning model is trained on GOES X-ray and FISM2 model data, focusing on minute-by-minute details
surrounding 964 M-class or stronger solar flare events from 2003 to the present.
We have attempted predictions on only four wavelengths within the X-ray and EUV spectral 1nm bin range and have
obtained meaningful results; in the future, we will expand our predictions to cover a broader range of wavelengths.
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1. During solar flares, the only available data we have is the GOES X-ray data (1-8A)
2. EUV observation is limited to certain wavelengths and is not viable. (SDO etc..)

=>» Limitations: Models

1. Empirical models of solar irradiance cannot represent changes due to real-time solar flare occurrences.

(EUVAC, HEUVAC, NRLEUV?2 etc..)

2. Even the FISM2 model does not provide real-time data.
3. Also, simultaneous prediction output for 105 wavelength bins is required, which is challenging.

=> In this study,

We developed a 4 test model to predict four wavelength ranges,

selecting three EUV wavelength ranges that respond sensitively to changes in X-rays after a flare occurrence.
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=>» To collect training data for the deep learning model,
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1. Firstly, accurate and actual observed input (problem) and output (solution) data are required.
We believe that the data from the FISM2 model (Chamberlin et al., 2020) meets this criterion.

2. Secondly, it involves gathering flare events that occurred during the available FISM2 model period.
We have selected and collected flare events through the following process.
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lll. Flare Events Selection & Classification

To generate training data for the FISM2 model, it's necessary to understand the data range provided by the FISM2 model.

The available FISM2 data spans from 1 January 2003 to 30 March 2023.
 For selecting flare events, we chose flares of class M1 and above. Through these criteria, we have secured a total of 964

flare events.
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IV. Deep Learning Model
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* The Fully Connected Layer (FC Layer), also known as Multi-Layer Perceptron (MLP), is a simple model characterized by densely

interconnected neurons, where each neuron in the previous layer is connected to every neuron in the next layer.
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V. Prediction Results
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For X-rays, the correlation coefficient(CC) was calculated as 0.91, while for EUV, it was 0.65, 0.81, and 0.5.
In the case of Mean Percentage Error(MPE), the values were -24.3, -17.5, -20.8, and -5.6%, indicating that,
overall, the predictions were lower than the actual observed values.

In future plans, we aim to refine areas where our model underpredicts relative to observations by tuning the deep learning

model's hyperparameters.

We also plan to expand the wavelength range to the full spectrum to better assess ionospheric responses, a step essential for
enhancing our model's utility in ionospheric modeling.

VIl. References & Acknowledgements

The findings detailed in this document were made possible by utilizing the FISM2 model as delineated by Chamberlin et al. 2020,
available at https://doi.org/10.1029/2020SW002588. We accessed these data through the LASP Interactive Solar Irradiance

Datacenter (LISIRD), found at https://lasp.colorado.edu/lisird/.

The GOES X-ray data and flare event information were obtained by referencing the information available
at https://www.swpc.noaa.gov/products/goes-x-ray-flux.

This project is a study supported by KASI's SpaceAl project. (https://spaceai.kasi.re.kr/)



https://doi.org/10.1029/2020SW002588
https://lasp.colorado.edu/lisird/
https://www.swpc.noaa.gov/products/goes-x-ray-flux
https://spaceai.kasi.re.kr/

