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•DV is able to provide quick and accurate horizontal velocities from 2 time-
consecutive continuum intensity images and is able to reproduce coherent 
structures present in simulation data at the length scale of solar granules (<1Mm).

•Active regions, as previously found, display different flow dynamics to typical quiet 
Sun (QS) regions, determined by the flow skeleton described by the finite-time 
Lyapunov exponent (FTLE) field.

•Emergence of an AR displays an initial complication in flow structure and then a 
distinct simplification after emergence.

•Flow structures inside ARs appear more vortical, on small scales, than 
surroundings providing further means to identify ARs independent of magnetic 
structure.

•Structures in flow presented in the FTLE field are similar to those seen in Evershed 
flows, seen in observations.

•Differences in the FTLE field between ARs and QS provides a signal for locating 
flow structures that are typical of ARs.

Results 
Surface data from the R2D2 simulation [see Hotta 
and Iijima, 2020] shown in Fig. 1 has been used to 
study photospheric flows throughout the evolution of 
a strong emerging flux. The simulation uses a set of 
radiative MHD equations and follows the evolution of 
a magnetic flux tube, placed at -30Mm relative to the 
photosphere, in a realistic box which covers the 
entire depth of the convection region (-200Mm).

Figure 3. Example 
of divergence 
field (a) from 
simulation at time 
of peak flux, with 
a zoom of the 
flows of the 
highlighted region 
with (b) the target 
flows, (c)  FLCT 
recovered flows, 
(d) DeepVel 
recovered flows.

Figure 1. Example frame of surface data, at time of peak magentic flux, from R2D2.  Top 
shows radiative intensity, bottom the magnetic field.
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Introduction
Space weather (SW) is driven by high energy events 
in the solar atmosphere, e.g. solar flares (SFs) and 
coronal mass ejections (CMEs). These events occur 
in strong active regions (ARs) in the solar 
atmosphere. Measuring and understanding these 
events is paramount to forecasting when significant 
SW events will occur. Recent advances in high 
performance computing has enabled the simulation 
of emerging flux tubes throughout the entirety of the 
Sun’s convective region into the lower atmosphere 
with the R2D2 code (see Hotta and Iijima, 2020). 
Assimilation of these data, along with the application 
of machine learning (ML) techniques such as the 
DeepVel (DV, see Ramos, 2017) neural network (NN), 
allows us to estimate realistic photospheric plasma 
velocities, surrounding strong magnetic fields, at 
small scales and with greater precision than existing 
methods (see Lennard et. al., in review), e.g. Fourier-
Local Correlation Tracking (FLCT, see Fisher and 
Welsch, 2008). By training DV with data from R2D2, 
we are able to estimate high resolution velocities and 
derive the finite-time Lyapunov exponent (FTLE) 
fields (see Haller, 2014), which details repelling 
structure in the plasma flow, hence providing a 
skeleton for the flow. It has been shown that changes 
in these structures coincide with changes in the 
magnetic structure of the photosphere (see Chian et. 
al., 2019) and that these changes can be observed 
some time before the emergence of a strong 
magnetic flux (see Silva et. al., 2023). By applying 
these methods to our recovered velocity fields, we 
are able to detect a signals in the plasma flow for 
identifying ARs and tracking their motion throughout 
the photosphere by observing changes in the the 
flow structure through the FTLE fields. This, in theory, 
could be used for the identification and therefore 
improved observation of ARs.

Figure 4. Row (1) 
shows the 20 
minute (granular 
scales) recovered 
FTLE fields 
(forward in red, 
backwards in 
blue) superposed 
on the magnetic 
field. Row (2) 
shows the 100 
minute 
(mesogranular 
scales) recovered 
FTLE fields. 
Column (a) is 
generated using 
velocities from 
the simulation, (b) 
shows is 
generated using 
the velocities 
recovered by DV.

Figure 2. 
Sketch of NN 
performing 
recovery. 
Intensitygrams 
with velocity 
are used for 
training. New 
data is fed to 
the network 
and DV 
produces 
associated 2D 
velocity field.
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Future Work
•Test on observational data matching simulation resolution 
(~0.1”) and test predictive capability of methodology.

•Test DV on low resolution (~1”) data from SDO/HMI over entire 
solar disc.

•In depth study of evolution of plasma flow dynamics throughout 
AR lifetime.

•Make improvements accuracy of DV for detecting the smallest 
possible changes and improve speed structure detection.

Video of tracking an active region by 
measuring changes in flow, measured by 
difference in mean 20-minute fFTLE 
value. When the difference in reaches a 
certain threshold, the corresponding 
region will light up. This first-of-a-kind 
approach reveals that DeepVel provides 
accurate velocities for recovering the 
flow dynamics around an AR

The full details of this work can be found in the paper “Analysing the Recovery of Coherent Structures using DeepVel in an Active 
Region” (in review)


Velocities were recovered using the DV neural 
network (NN) and compared with the widely used 
Fourier local correlation tracking (FLCT) [Fisher and 
Welsch, 2008] algorithm. The NN was trained to 
reproduce photospheric velocities from 2 time-
consecutive intensity images. The NN approach 
presents many benefits (see Fig. 3) over FLCT since 
the network learns spatial relationships between 
flows. As shown, DV is able to recover source and 
sink regions accurately and also give insight to 
regions of vorticity. It also presents over a 100x 
speedup after training, compared with FLCT. 

With recovered velocities, there still remains the 
problem of analysing these in order to determine 
classify the dynamics of different regions. In order to 
detect different flow dynamics we determine the flow 
skeleton by means of seeking the most repelling and 
attracting material surfaces, which act as transport 
barrier for which no fluid elements can pass through. 
A way of finding these is calculating the FTLE (see 
Eq. 1) field [Haller, 2014]. In forward (fFTLE) time, 
ridges in the FTLE field present the most repelling 
structures in flow. In backward (bFTLE) time these 
ridges present the most attracting structures, see 
Fig. 4. Typically the bFTLE ridges coincide with 
intergranular lanes and the fFTLE ridges pass over 
the centre of granules, and they can be used to 
determine other structures. Therefore the FTLE 
ridges provide a skeleton for determining the 
dynamics of the flow field.

Fig. 5 shows the evolution of the 20-minute fFTLE 
distribution at key points in the life of the AR. The 
distribution mean, over the AR, is shifted more to 0 
as the AR grows, and after the peak the distribution 
returns to one more typical of the QS. This change is 
due to the reduction in the fFTLE field over the pore, 
where a large repelling structure (consistent with an 
Evershed flow) surrounds the pore and there is little/
no repelling behaviour inside. The difference in the 
mean has been tracked throughout the simulation 
and presented in the video (see the QR code)

Methodology

Data and Model

Figure 5. 
Evolution of 
20 minute 
fFTLE field 
distribution 
generated 
from 
simulation 
(black), FLCT 
(blue) and DV 
(red), over a 
QS patch and 
an AR
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Equation 1. The FTLE 
is found by computing 
the maximal 
eigenvalues λ of the 
Jacobian matrix for 
particles xi,j in the flow.
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