
Iterative Driver Estimation and Assimilation (IDEA)Dragster Ensemble DA Engine

Leveraging Data Assimilative Models for Enhanced Satellite Drag Predictions
M. Pilinski1,2, W. Zhan2, E. Sutton2, J. Knuth1, S. Mutschler3, K. Tobiska3, G. Crowley4 , J. Wilson4, J. Steward4

1LASP, University of Colorado, 2SWxTREC, 3Space Environment Technologies, 4Orion Space Solutions LLC.

Introduction

• Low Earth Orbit (LEO) satellite drag is a persistent 
Space Weather (SWx) challenge. 
• Related to errors in air-density predictions and 

lack of uncertainty specification
• Leads to inadequately forecasting collisions, with 

dire consequences
• Many collision warnings are false positives 

associated with uncertainties in modeling and 
forecasting densities in the upper atmosphere

• Drag-validated data assimilation (DA) techniques 
such as IDEA [Sutton 2018], and Dragster [Pilinski et 
al. 2016] have the ability to determine the 
thermospheric model forcing that is most 
compatible with the observed satellite drag. 

• These methods have been the only ones so far 
shown to outperform the current state of the art in 
density specification.

• It is not clear how well DA driver corrections persist 
into the forecast window nor how best to combine 
them with existing operational driver forecasts. 

• We therefore evaluate various driver mapping 
schemes on archived forecast driver indices, 
estimates, and proxies
• F10.7, S10(SET), F30, MgII (ADAPT/SIFT)
• Kp/Ap (SWPC), Anemomilos Dst (SET)
• Other available forecasts will be considered

Thermospheric Data Assimilation with Forcing Estimation

Conclusions

• DA methods that estimate forcing drivers are able 
to match or exceed HASDM performance

• The relationship between forecast and estimated 
drivers (mapping) evolves over time

• It is not known how DA driver estimates should be 
related to forecast drivers to enhance forecast 
performance

• Mapping regression “models” allow the DA 
techniques to seamlessly transition from ND 
nowcast to forecast using the existing operational 
forecast data without sudden changes in the driver 
offset or scale factor

Contact: marcin.pilinski@lasp.colorado.edu
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2015 ¼ Orbit Average - Validation Results, SD Logarithmic (Linear), 5 storms with Kp>5+

Dragster HASDM* JB-08 NRLMSISE-00

Swarm-A (450km) 0.115 (0.101) 0.117 (0.133) 0.180 (0.202) 0.267 (0.318)
Swarm-B (515km) 0.198 (0.202) 0.219 (0.295) 0.258 (0.329) 0.340 (0.497)

2017 ¼ Orbit Average - Validation Results, SD Logarithmic (Linear), 2 storms with Kp>5+

Dragster HASDM* JB-08 NRLMSISE-00

Swarm-A (450km) 0.176 (0.160) 0.188 (0.220) 0.259 (0.303) 0.278 (0.442)
Swarm-B (515km) 0.377 (0.616) 0.389 (0.724) 0.440 (0.740) 0.437 (1.227)

Table 1 (left) showing 
Dragster performance 
metrics over two years. 
Metrics compare Swarm 
(not assimilated) density 
observations and 
model-computed 
densities.

*HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model

Challenges of Driver Forecast Integration with Models
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(MSE=160)

NARX using recent values of DA-estimated forcing 
(MSE=37)
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Forecast Driver Mapping, Preliminary Results

DA with Driver Estimation
(Dragster, IRIDEA)

using TIE-GCM and MSIS ensembles

Time series of nowcast Estimated Drivers

Driver Mapping and Uncertainty Estimation

Time series of nowcast forcing indices and proxies

Forecast of Estimated Drivers 
and their Uncertainties

Operational forecasts of indices 
and proxies

Driver Mapping 
Functions

TIE-GCM and MSIS runs to 
produce Neutral Density 

Forecasts

moving training window

Run by user
(SWPC, NASA, or 
home institution)

Run at Orion
and CU Boulder

Hosted publicly on SWx Portal (CU/SWxTREC)

Run in cloud on SWx Workbench 
(CU/SWxTREC) 

moving training window

Developed in 
Proposed Effort*

Available Models, 
Data, and Assimilative 

Techniques

Available Data

Issued index underestimates 
storm by ~60 ap units

Estimated index indicates a 
cooler thermosphere during 
storm recovery

Dragster
Issued Index
Forecast Index

ForecastRecent Values

ForecastRecent Values

Dragster
Issued Index
Forecast Index

Nowcast Mapping
Forecast Mapping

Nowcast Mapping
Forecast Mapping

• WAMP-IPE example above used solar wind 
drivers for nowcast but Kp-driven 
parametrization for the forecast.

• Without driver-mapping, the differently-
generated forecasts can deviate from the model 
and observed baselines.

• DA without forcing estimates, such as HASDM, 
reduces forecast offsets by evaluating  recent 
Thermospheric temperature estimates.

NNH23ZDA001N-SWR2O2R: B.7 Space Weather Science Application Research-to-Operations-to-Research 
Producing a Benchmark HASDM Forecast Density Database 
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densities are shown in Figure 6 with JB2008 for context. The HASDM nowcast and forecast data 
was generated by Omitron for this proposal, and the figure showing both the HASDM forecast and 
nowcast is shown for the first time. WAM-IPE data was retrieved from SWPC's recently estab-
lished, routinely updated operational archive of the full 2-day forecast output (https://regis-
try.opendata.aws/noaa-nws-wam-ipe/). Both figures show the global mean density at altitude 
shells 200 km, 400 km, and 550 km, with a 3-hour resolution. Overall, the magnitude of WAM-
IPE nowcast density is consistently higher than HASDM and JB2008. Figure 7 provides reference 

to the geomagnetic storm, shown by the elevated Kp on April 24th, as well as solar flux shown by 
the F10.7 proxy. WAM-IPE overestimates the geomagnetic storm peak at higher altitudes (400 
and 550 km) but aligns well with HASDM at 200 km. WAM-IPE appears to demonstrate post-
storm cooling due to overproduction of NO on April 25th, but not to the extent of HASDM. Inter-
estingly, WAM-IPE two-day forecasts (grey curves) trend lower to more accurate values that better 
align with HASDM, especially at higher altitudes. This could indicate that the lower atmosphere 
data assimilation in WAM-IPE, which 
affects the nowcast but begins to di-
minish during the forecast, may be 
skewing the nowcasts. Another possi-
bility is that the solar wind model often 
used in nowcast mode, and the Kp pa-
rameterization used in forecast mode 
may be out of step with each other.  
This indicates areas for improvement to 
WAM-IPE on the research side. On the 
operations side, the underperformance 

Fig. 5. April 2023 WAM-IPE nowcast and forecast 
density, as well as HASDM nowcast density. 

Fig. 6. April 2023 HASDM nowcast and forecast den-
sity, as well as JB2008 density. 

Fig. 7. April 2023 space weather indices, Kp and F10.7 

Validation results of different regression prediction 

models for estimated forcing (green is best). Methods 

described by Bishop [2006] and Zhou [2021]

Model Type F107 Val. MSE Kp Val. MSE

Neural Network 163 2.46
GPR 160 2.47

Ensemble 197 2.50
SVM 162 2.50
Tree 183 2.50

Linear Regression 204 2.51
Kernel 294 3.42

NARX using recent 37 Under evaluation

Figure 2 (left) shows a 2015 example
of a driver dataset and the
corresponding driver estimates
determined by assimilating 70
satellite orbits into Dragster.
• Issued data often overestimated

quiet time forcing during this time
• Forcing was underestimated by

the issued index during the large
storm on 3/17

• Pilot mapping study using driver estimates from IDEA 
assimilation along with issued F10.7 and Kp indices.

• Tested and compared the performance of different regression 
models and a nonlinear autoregressive neural network (NAR) 
model. 

• Input was the issued index (such as Kp) and output was the DA-
estimated equivalent based on an IDEA run spanning days 80-
364 of 2003.

• Gaussian process regression (GPR) performs the best when 
making predictions for F10.7 and a medium-sized neural 
network does better when making predictions for Kp. 

• Figure 6 indicates that the mapping or “prediction” errors can 
be reduced by taking advantage of past values of DA-estimated 
drivers. 

Figure 3 (above) shows an example of a driver dataset and the corresponding driver estimates determined 
by assimilating GOCE accelerometer data into IDEA

Issued Forcing
Estimated Forcing

• Estimates corrections to external solar and geomagnetic drivers
• Ensembles of TIE-GCM models (can also use WAM-IPE)
• Has been shown to provide better or comparable densities to HASDM* 

Table 2 (below) showing IDEA performance metrics over 9 months. Metrics evaluate the GRACE (not 
assimilated) density observations and model-computed densities ratios.

2003 day 80-365 Orbit Average – Ratio Validation Results, RMSe Logarithmic, 1 storm with Kp>5+

IDEA HASDM* TIE-GCM GPI JB-08 NRLMSISE-00

GRACE-A 0.076 0.072 0.273 0.172 0.266

• Estimates corrections to external solar and geomagnetic drivers along with direct density 
corrections on a user-specified grid

• Ensembles of MSIS models (can also use TIE-GCM)
• Has been shown to provide better or comparable densities to HASDM* 

• Dragster and IDEA generate forecasts based on 
removing a bias between issued and forecast drivers 
at the time of the forecast launch.

• To the left of the vertical dashed line in Figure 4, the 
orange line represents a recent forecast launched on 
8/30/2017. To the right of the vertical dashed line, the 
orange represents the “current” forecast launched on 
9/7/2017

• Black solid lines are DA-estimated drivers to the left of 
the vertical dashed line and the de-biased Dragster 
forecast drivers to the right.

• The bottom panels illustrate a linear-regression 
mapping of the recently issued nowcast (black) and 
forecast (orange) indices to the DA-estimated 
parameters. This mapping changes with time and 

conditions.

• Issued forcing parameters (8/30 to 9/7) over-
estimated the energy input to the thermosphere.

• De-biasing at 9/7 leads to an overestimate of storm 
and post-storm time period geomagnetic forcing.

Figure 3 (above), 2023 SWPC WAM-IPE nowcast & forecast 

Figure 4 (above), Solar (left) and geomagnetic (right) drivers for the Dragster model. Forecasts 
occur to the right of the vertical dashed line and are compared to an eventual nowcast. The de-
biased forecast used by Dragster is shown using the dark black solid line.

Figure 5 (above), (Left) Mapped F10.7 outputs and the DA-estimated F10.7 “targets” and 
variation of MSE by using the NAR model. (Right) Mapped F10.7 and DA-estimated F10.7 
and variation of MSE by using the NARX model that takes into account recent history. 

Table 3 (below), Validation results of regression
prediction models (green is best). Methods
described by Bishop [2006], Zhou [2021],
Comporeale et al. [2018].

Figure 1 (below), A driver-mapping approach to enable DA-based 
ND forecast capability. Method to provide DA-based forecasts and 
their uncertainties currently does not exist.

Issued Solar Issued Geomagnetic
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*HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model
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