Leveraging Data Assimilative Models for Enhanced Satellite Drag Predictions
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Introduction Thermospheric Data Assimilation with Forcing Estimation
 Low Earth Orbit (LEO) satellite drag is a persistent 4 . N . . . . e er I
Space Weather (SWx) challenge Dragster Ensemble DA Engine Iterative Driver Estimation and Assimilation (IDEA)
» Related to errors in air-density predictions and * Estimates corrections to external solar and geomagnetic drivers along with direct density * Estimates corrections to external solar and geomagnetic drivers
lack of uncertainty specification corrections on a user-specified grid * Ensembles of TIE-GCM models (can also use WAM-IPE)
* Leads to inadequately forecasting collisions, with * Ensembles of MSIS models (can also use TIE-GCM)  Has been shown to provide better or comparable densities to HASDM*
dire consequences * Has been shown to provide better or comparable densities to HASDM* 9 | | | | | | | | |
* Man llision warnin re fal itiv A T R R T T ] —— Observed
° y. ©o dS O. h | gs.a .e a. > pOdS tl =5 g i 5 - Figure 2 (left) shows a 2015 example IDEA-Estimated
assouatg wit l.Jr)ce.rtalntles In modeling an 200 - ssued index underestimates _ ~ of a driver dataset and the el lﬂ]n[ |
forecasting densities in the upper atmosphere : storm by 60 ap units  corresponding  driver  estimates @
 Drag-validated data assimilation (DA) techniques N B ~ determined by assimilating 70 f= -
such as IDEA [Sutton 2018], and Dragster [Pilinski et = " |ssued Forcing | satellite orbits into Dragster. §.3 i _ ]
al. 2016] have the abl|lty to determine the % . Estimated Forcing Ezg:zsttii;;doixpr:rlgaﬁ;ig . ISSfJetci. dat? Oftend O‘{ere;:l-mtqted J_ }[
thermospheric model forcing that is most 0 i storm recovery - guietmetorcing during this time
compatible with the observed satellite drag I | * Forcing was underestimated by 0 ‘ - |
' [ | N the issued index during the large ~ ' ) |
50
* These methods have been the only ones so far i d [ | )l ﬂ\\ |l ] storm on 3/17 66 68 70 /e 74 76 78 80 82
shown to outperform the current state of the art in N ™ ! | Day of Year (2013)
density specification. B S o o | | | | Figure 3 (above) shows an example of a driver dataset and the corresponding driver estimates determined
y sp 01/17  02/06  02/26  03/18  04/07  04/27 e | ot i IDEA
* Itis not clear how well DA driver corrections persist 2015 % Orbit Average - Validation Results, SD Logarithmic (Linear), 5 storms with Kp>5+ Table 1 (left) showing y assimilating accelerometer data into
into the forecast window nor how best to combine Dragster HASDM* JB-08 NRLMSISE-00 Dragster performance Table 2 (below) showing IDEA performance metrics over 9 months. Metrics evaluate the GRACE (not
them with existing operational driver forecasts. Swarm-A (450km)  0.115 (0.101) 0.117 (0.133) 0.180 (0.202) 0.267 (0.318)  Metrics over two years. assimilated) density observations and model-computed densities ratios.

Metrics compare Swarm

* We therefore evaluate various driver mapping Swarm-B (515km)  0.198 (0.202) 0.219 (0.295) 0.258 (0.329) 0.340 (0.497) (not assimilated) densit
NOT asSimiiate ensity

2003 day 80-365 Orbit Average — Ratio Validation Results, RMSe Logarithmic, 1 storm with Kp>5+

schemes on archived forecast driver indices, 2017 % Orbit Average - Validation Results, SD Logarithmic (Linear), 2 storms with Kp>5+ observations and IDEA HASDM* TIE-GCM GPI JB-08 NRLMSISE-00
estimates, and proxies Dragster HASDM* JB-08 NRLMSISE-00 o del-computed GRACE-A 0.076 0.072 0.273 0.172 0.266

* F10.7, S10(SET), F30, Mgll (ADAPT/SIFT) swarm-A (450km) 0176 {0.160) 0.188 (0.220) 0259 (0.303) 0278 {0.442) densities. *HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model

. Kp/Ap (SWPC)’ Anemomilos Dst (SET) Swarm-B (515km) 0.377 (0.616) 0.389 (0.724) 0.440 (0.740) 0.437 (1.227)

e Other available forecasts will be considered \*HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model AN .

Figure 1 (below), A driver-mapping approach to enable DA-based
ND forecast capability. Method to provide DA-based forecasts and Cha"enges of Driver Forecast Integration with Models

their uncertainties currently does not exist.
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ST (Dreester IRIDEA) g:> produce Neutral Density  EON LNl 1.0- Bt - | removing a bias between issued and forecast drivers
using TIE-GCM and MSIS ensembles Forecasts home institution) - - | . .
ovi " . @ Hosted publicly on SWx Portal (CU/SWxXTREC) § 0.8 . —\i | at the tlme Of the forecaSt |aunCh'
moving training WlndOVl./_ _____ : - o Y- S = ‘ ‘ . . . .
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Figure 3 (above), 2023 SWPC WAM-IPE nowcast & forecast oo —— “ — the vertical dashed line and the de-biased Dragster
Conclusions y forecast drivers to the right.
. . . : e WAMP-IPE example above used solar wind C 2 " * The bottom panels illustrate a linear-regression
DA methods that estimate forcing drivers are able . . s T . .
drivers for nowcast but Kp-driven A . = mapping of the recently issued nowcast (black) and
to match or exceed HASDM performance L b5 ™ 2 * . .
. . : parametrization for the forecast. = © * forecast (orange) indices to the DA-estimated
 The relationship between forecast and estimated : . : : E ks * x . : it
. . .  Without driver-mapping, the differently- 2 = ¥ Ox parameters. This mapping changes with time and
drivers (mapping) evolves over time enerated forecasts can deviate from the model § NowcastVaPPnE | £ P X T diti
: : : F Mappi 7 . * - Mappi conaitions.
* Itis not known how DA driver estimates should be 5 . orecast Mapping 7 "fj % rorecast Mappine ,
_ and observed baselines. z * Issued forcing parameters (8/30 to 9/7) over-
related to forecast drivers to enhance forecast . . . " , ,
performance * DA without forcing estimates, such as HASDM, ' | w0 - - | estimated the energy input to the thermosphere.
. Issued Solar Issued Geomagnetic .. .
reduces forecast offsets by evaluating recent s * De-biasing at 9/7 leads to an overestimate of storm

Figure 4 (above), Solar (left) and geomagnetic (right) drivers for the Dragster model. Forecasts
occur to the right of the vertical dashed line and are compared to an eventual nowcast. The de-
biased forecast used by Dragster is shown using the dark black solid line.

 Mapping regression “models” allow the DA
techniques to seamlessly transition from ND
nowcast to forecast using the existing operational

forecast data without sudden changes in the driver Forecast Driver Mapping, Preliminary Results
offset or scale factor

Thermospheric temperature estimates. and post-storm time period geomagnetic forcing.

Nonlinear Autoregressive neural network, NAR NARX using recent values of DA-estimated forcing Table 3 (below), Validation results of regression
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Sutton, E. K (.2018), A.new method of physics-based data assimilation S o gsponse - esponse s «  Input was the issued index (such a5 Kp) and output was the DA-
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