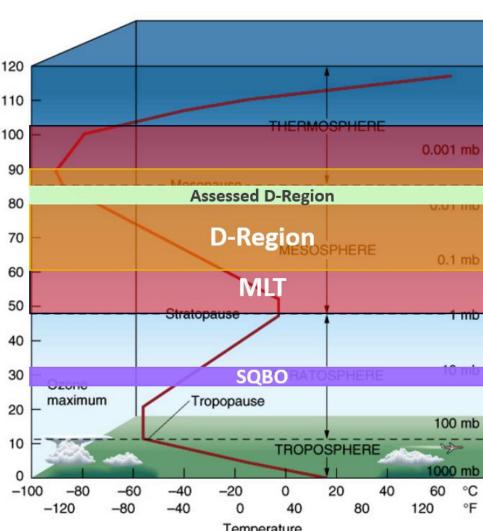

Assessing the Relationship Between the Quasi-Biennial Oscillation and D-Region Electron Density

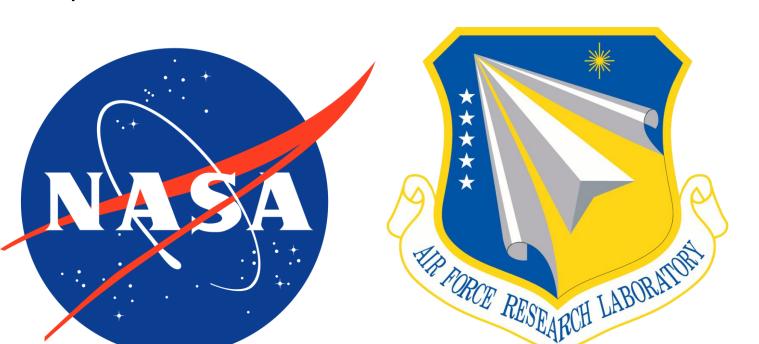
Natalie R. Wirth¹², Kyle E. Fitch¹, Daniel J. Emmons¹, Dong L. Wu³, Jae N. Lee³, and Cornelius C.J.H. Salinas³ Department of Engineering Physics, Air Force Institute of Technology, Dayton, OH 2nd Weather Squadron, 557th Weather Wing, Offutt Air Force Base, NE ³ NASA Goddard Space Flight Center (GSFC), Greenbelt, MD Corresponding author: <u>natalie.wirth@us.af.mil</u>

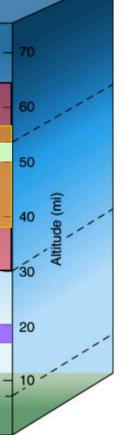
INTRODUCTION

- Past research mostly focused on upper ionosphere
- D-region largely neglected, but closest layer to lower atmosphere and linked to both solar and terrestrial phenomena
- Radio wave propagation sensitive to D-region electron density (N_e) —especially high frequency (HF) waves—through refraction, attenuation, and fading; accurate N_e prediction critical for HF communications
- D-region N_e , in turn, sensitive to oscillations such as Quasi-Biennial Oscillation (**QBO**), which transports momentum into the upper stratosphere and mesosphere/lower thermosphere (MLT)
- Open research questions addressed here:
- How strong & predictable is the D-region N_{ρ} & QBO relationship?
- 2. What are its latitudinal extent and hemispheric tendencies?

Fig 1. Snel's law for signals traversing varying electron densities




Fig 2. Regions of the atmosphere with areas of research overlayed.


METHODOLOGY

- Equatorially averaged the day and night electron density then **detrended** using a Savitzky-Golay filter (solar cycle removed). A Butterworth low-pass filter was also applied to the equatorially
- averaged electron density.
- Separated the day and night electron density into 10-degree **latitude bins** from -50 degrees to 50 degrees then detrended using a Savitzky-Golay filter.
- Applied a fast Fourier transform (FFT) to equatorially averaged detrended day and night electron density, QBO 10 mb, QBO 30 mb, and the binned electron density.
- After normalizing the equatorially averaged and detrended electron indicating regional variations in QBO impact. density and both QBO pressure levels, a **continuous wavelet** • Consistent phases for the QBO frequency of 0.33 yr⁻¹ were observed, transform (CWT) was applied indicating a stable relationship over time.
- A cross wavelet transform (XWT) was also applied to each of the previously normalized datasets
- Amplitudes of frequency ranges corresponding to the **QBO** (.3 to .5 • For CWT there was mutual significance between QBO and electron yr^{-1}), **annual** (.9 to 1.1 yr^{-1}), **semi-annual** (1.9 to 2.1 yr^{-1}), and density was observed, indicating phase relationships over time. **quarterly** (3.8 to 4.2 yr⁻¹) were summed for the equatorially • Significant correlations varied between lagging and anti-phase relationships across different time periods and latitudes. averaged electron density and the binned electron density

Project supported by the Air Force Research Laboratory. These views are those of the authors and do not necessarily represent those of the Department of Defense or U.S. Government.

SIGNIFICANT RELATIONSHIP **BETWEEN QBO AND D-REGION** ELECTRON DENSITY WITH HEMISPHERIC ASYMMETRY

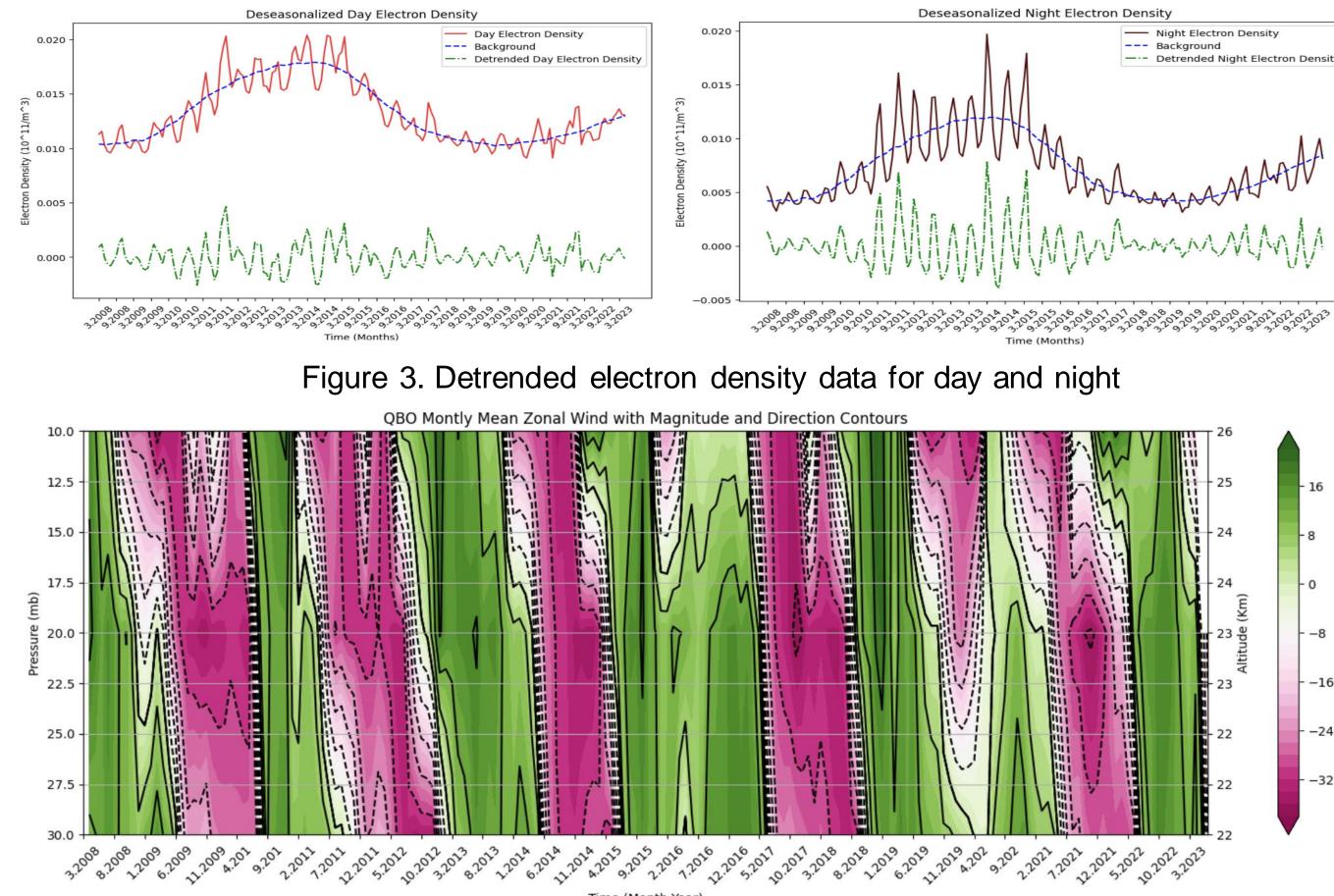


Figure 4. QBO monthly mean zonal average from 30 mb to 10 mb

RESULTS

- Notable frequencies within accepted QBO range were 0.33 yr-1 and 0.39 yr^{-1} , while 0.53 yr $^{-1}$, although anomalous, could be associated.
- Equatorially averaged day and night electron densities FFT analysis showed **peak frequencies** at ~2 yr⁻¹, indicating strong **semi-annual** oscillations.
- The top frequency of 0.33 yr⁻¹ was observed in both day and night electron density, suggesting a QBO influence.
- The binned electron density FFT produced the top QBO frequency of 0.33 yr⁻¹ across most magnetic latitudes for both day and night data. • Other QBO frequencies were not prominent across all bins,
- Phases for other QBO frequencies varied between day and night datasets, suggesting diurnal variations in ionospheric response.

	Prominent QBO Frequency (1/yr)									
	.3	282	3.	5907	.3938		.5251		.2626	
Deseasonalized Day	-1.254 rad	61 months	863 rad	23 months	2.917 rad	1.18 months	.040 rad	.01 months	.987 rad	.60 months
Deseasonalized Night	-1.265 rad	61 months	689 rad	19 months	-3.116 rad	-1.26 months	.186 rad	.06 months	1.338 rad	.81 months
Deseasonalized & Annual Filter Day	-1.260 rad	61 months	881 rad	24 months	2.927 rad	1.18 months	.030 rad	.01 months	.993 rad	.60 months
Deseasonalized & Annual Filter Night	-1.279 rad	62 months	737 rad	20 months	-3.100 rad	-1.25 months	.164 rad	.05 months	1.368 rad	.83 months

day and night electron density and additionally filtered day and night electron density

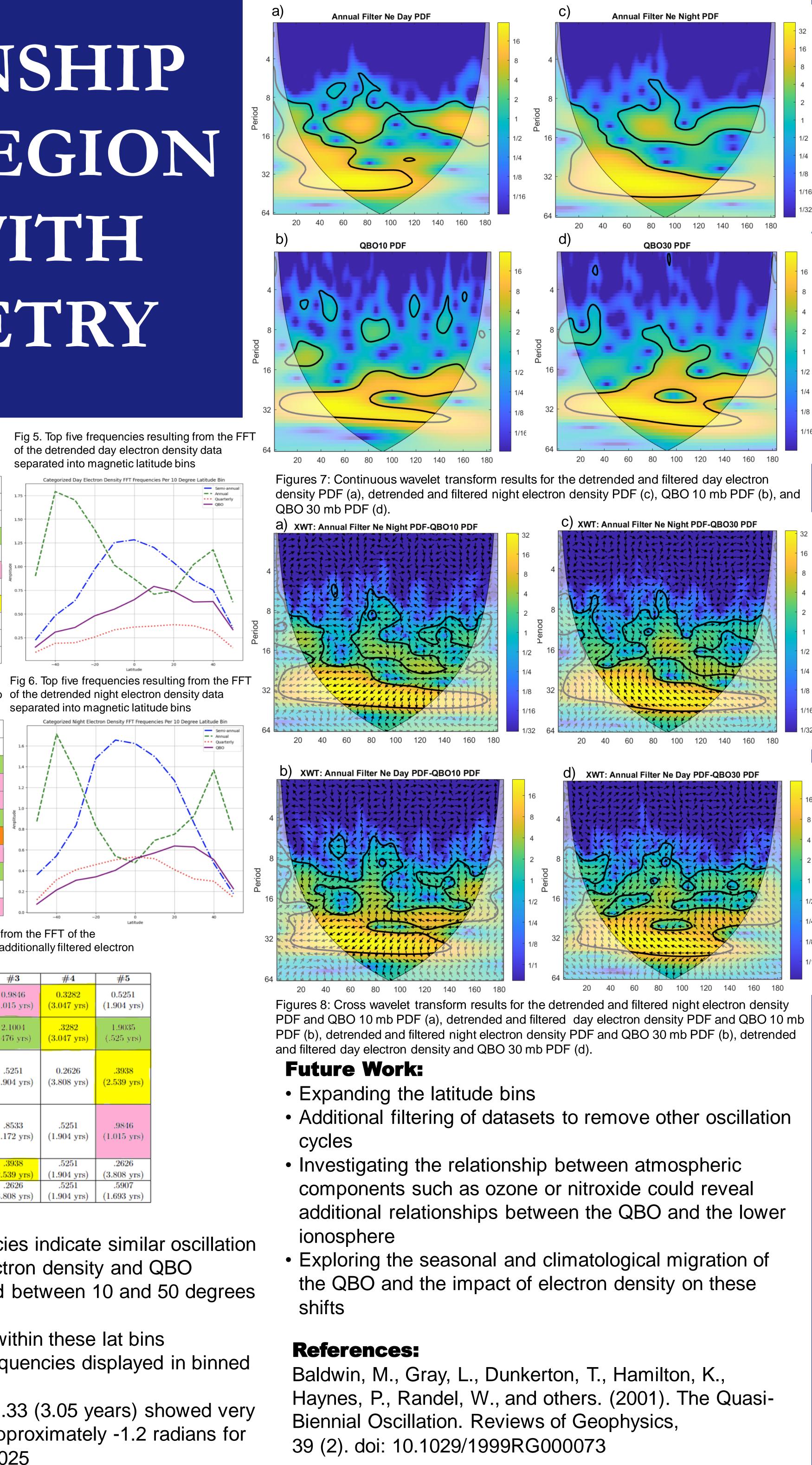


Table 2. Top five frequencies resulting from the FFT the detrended night electron density data separated into magnetic latitude bins

Magnetic Latitude	#1	#2	#3	#4	#5
40° to 50°	.9846	.3282	.9189	1.9691	.8533
	(1.016 yrs)	(3.047 yrs)	(1.088 yrs)	(.508 yrs)	(1.172 yrs)
30° to 40°	.9846	1.9691	.3282	.9189	.2626
	(1.016 yrs)	(.508 yrs)	(3.047 yrs)	(1.088 yrs)	(3.808 yrs)
20° to 30°	.9846	1.9691	.3282	.2626	2.0348
	(1.016 yrs)	(.508 yrs)	(3.047 yrs)	(3.808 yrs)	(.491 yrs)
10° to 20°	1.9691	.3282	2.0348	.2626	.8533
	(.508 yrs)	(3.047 yrs)	(.491 yrs)	(3.808 yrs)	(1.172 yrs)
0° to 10°	1.9691	2.0348	.3282	.9846	1.0502
	(.508 yrs)	(.491 yrs)	(3.047 yrs)	(1.016 yrs)	(.952 yrs)
0° to -10°	1.9691	2.0348	.9846	.3282	1.1815
	(.508 yrs)	(.491 yrs)	(1.016 yrs)	(3.047 yrs)	(.846 yrs)
-10° to -20°	.9846	1.9691	2.0348	.2626	.3282
	(1.016 yrs)	(.508 yrs)	(.491 yrs)	(3.808 yrs)	(3.047 yrs)
-20° to -30°	.9846	1.0502	1.9691	2.0348	.2626
	(1.016 yrs)	(.952 yrs)	(.508 yrs)	(.491 yrs)	(3.808 yrs)
-30° to -40°	.9846	1.0502	1.9691	.9189	.2626
	(1.016 yrs)	(.952 yrs)	(.508 yrs)	(1.088 yrs)	(3.808 yrs)
-40° to -50°	.9846	1.0502	1.9691	.9189	.2626
	(1.016 yrs)	(.952 yrs)	(.508 yrs)	(1.088 yrs)	(3.808 yrs)

Table 3. Top five frequencies resulting from the FFT of the detrended night electron density data separated into magnetic latitude bins

Magnetic Latitude	#1	#2	#3	#4	#5	
40° to 50°	.9846	.3282	1.0502	2.1004	1.1158	
	(1.016 yrs)	(3.047 yrs)	(.952 yrs)	(.476 yrs)	(.896 yrs)	
30° to 40°	.9846	2.1004	.3282	.2626	1.9691	
	(1.016 yrs)	(.476 yrs)	(3.047 yrs)	(3.808 yrs)	(.508 yrs)	
20° to 30°	1.9691	2.0348	2.1004	.2626	.9189	
	(.508 yrs)	(.491 yrs)	(.476 yrs)	(3.808 yrs)	(1.088 yrs)	
10° to 20°	1.9691	2.0348	.3282	2.1004	.9189	
	(.508 yrs)	(.491 yrs)	(3.047 yrs)	(.476 yrs)	(1.088 yrs)	
0° to 10°	1.9691	2.0348	2.1004	.3282	1.9035	
	(.508 yrs)	(.491 yrs)	(.476 yrs)	(3.047 yrs)	(.525 yrs)	
0° to -10°	1.9691	2.0348	2.1004	.3282	4.0039	
	(.508 yrs)	(.491 yrs)	(.476 yrs)	(3.047 yrs)	(.250 yrs)	
-10° to -20°	1.9691	2.0348	2.1004	1.9035	.9189	
	(.508 yrs)	(.491 yrs)	(.476 yrs)	(.525 yrs)	(1.088 yrs)	
-20° to -30°	2.0348	1.9691	.9846	.1313	2.1004	
	(.491 yrs)	(.508 yrs)	(1.016 yrs)	(7.616 yrs)	(.476 yrs)	
-30° to -40°	.9846	1.0502	.9189	.1969	.1313	
	(1.016 yrs)	(.952 yrs)	(1.088 yrs)	(5.079 yrs)	(7.616 yrs)	
-40° to -50°	.9846	1.0502	1.9691	2.0348	.9189	
	(1.016 yrs)	(.952 yrs)	(.508 yrs)	(.491 yrs)	(1.088 yrs)	

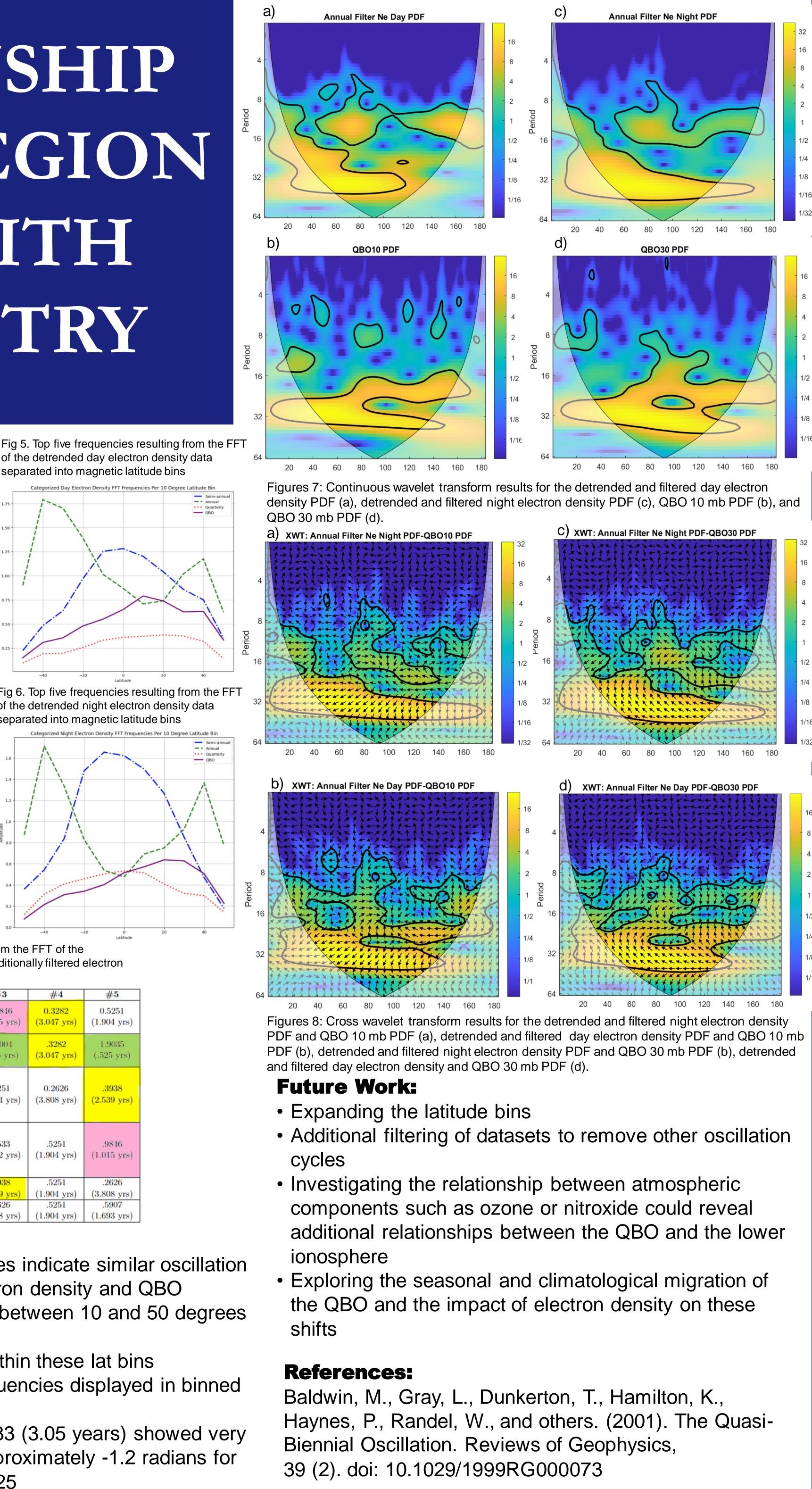


Table 4. Top five frequencies resulting from the FFT of the equatorially averaged, detrended and additionally filtered electron density data and QBO

Dataset	#1	#2	#3	#4	#5
Deseasonalized Day Electron Density	1.9691 (.507 yrs)	2.0348 (.491 yrs)	0.9846 (1.015 yrs)	0.3282 (3.047 yrs)	0.5251 (1.904 yrs)
Deseasonalized Night Electron Density	$\frac{1.9691}{(.507 \text{ yrs})}$	2.0348 (.491 yrs)	2.1004 (.476 yrs)	.3282 (3.047 yrs)	$\frac{1.9035}{(.525 \text{ yrs})}$
Deseasonalized & Annual Filtered Day Electron Density	.3282 (3.047 yrs)	.9846 (1.015 yrs)	.5251 (1.904 yrs)	0.2626 (3.808 yrs)	.3938 (2.539 yrs)
Deseasonalized & Annual Filtered Night Electron Density	.3282 (3.047 yrs)	.3938 (2.539 yrs)	.8533 (1.172 yrs)	.5251 (1.904 yrs)	.9846 (1.015 yrs)
10mb QBO	.3282 (3.047 yrs)	.5907 (1.693 yrs)	.3938 (2.539 yrs)	.5251 (1.904 yrs)	.2626 (3.808 yrs)
30mb QBO	.3282 (3.047 yrs)	.3938 (2.539 yrs)	.2626 (3.808 yrs)	.5251 (1.904 yrs)	.5907 (1.693 yrs)

DISCUSSION

- Strong matching QBO frequencies indicate similar oscillation patterns between D-region electron density and QBO
- QBO Frequencies concentrated between 10 and 50 degrees for both day and night dataset
- Second greatest frequency within these lat bins
- Uneven distribution of QBO frequencies displayed in binned electron density data
- The longest QBO frequency of .33 (3.05 years) showed very consistent negative phase at approximately -1.2 radians for each dataset with a spread of .025 Consistent with XWT results
- Negative night phases with .39 consistent with XWT results but positive day phases inconsistent

Presented at the 2024 Space Weather Workshop 15-19 April 2024 DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Tascione, T. F. (2010). Introduction to the Space Environment (2nd ed.). Malabar, USA: Krieger Publishing Company