

What Other Quantities Can Be Forecasted Using Solar Wind Speed Forecasts/Tracking & With What Accuracies?

Heather A. Elliott^{1,2}, Maher A. Dayeh^{1,2}, Raphael Attie^{3,4}, Michael Starkey¹, and Craig E. DeForest⁵ ¹Space Science, Southwest Research Institute, San Antonio, TX; ²Physics and Astronomy Department, University of Texas at San Antonio, San Antonio, TX; ³NASA Goddard Space Flight Center, MD; ⁴George Mason University, VA; ⁵Southwest Research Institute, Boulder, CO

Purpose: We can leverage known statistical correlations and relationships between the solar wind speed and other parameters such as the density, temperature, field strength, and SEP fluxes to forecast additional guantities using the speeds estimated from coronagraphs and heliospheric imagers like those on PUNCH.

Source Properties & Dynamic Interaction

Bottom Left: Same format is Top Left with the field strength normalized by th average field strength from the prior solar rotation.

Top Right: Same format and binning as the Top Right, but here the field is normalized by the average field

ETA ETA 0.10

High High

<∆V/∆t>2da

-0.003

0.000

0.003

0.0 0.0020

Source Properties Large polar coronal holes em	it very fast Dynamic Interactions	Quantity Forecasted	Input Quantity	Formula	Input Error	Output Error
wind (650 to 860 km/s).	Dynamic interactions alter solar wind	SEP Peak Proton Flux for ESPs	Solar Wind Speed (V)	F _{peak} =(9.33e-18)V ^{7.54}	+10%	105%
Moderately fast wind (450-65)	0 km/s) compressions & rarefactions which				-10%	-54.8%
and/or from edges of larger co	oronal holes.	SEP Peak Proton Flux for CIRs	Solar Wind Speed (V)	F _{peak} =(9.33e-20)V ^{7.46}	+10%	104%
Fast wind is hotter & less den	ise than slow	×1			-10%	-54.4%
wind	Ambient Selar Wind	SEP Peak Proton Flux for ESPs	Solar Wind Speed Jump (∆V)	F _{peak} =(1.23e-02) $\Delta V^{2.75}$	+10%	30.0%
Both Source Properties & Dynamic Interactions	naliveis of Rarelation				-10%	-25.2%
25 25 Terret His Bonday View 1 700 650 27 CIR compressions	s.	SEP Peak Proton Flux for CIRs	Solar Wind Speed Jump (⊿V)	F_{peak} =(1.41e-15) $\Delta V^{6.65}$	+10%	88.5%
	I Solar				-10%	-50.4%
to the second se	to source	Solar Wind Temperature (Scatter)	Solar Wind Speed (V)	T=636.7V - 1.756E5	+10%	124% to 14.8% (300 to 850 km/s)
-2 -1 0 1 2 3 properties and dynam Days From Stream Interface interactions.	Adapted from Pizzo, 1978				-10%	-124% to -14.8% (300 to 850 km/s)
Adapted from Borovsky and Denton, 2010		Solar Wind Temperature (1-D binned)	Solar Wind Speed (V)	T=563.0V — 1.455D5	+10%	72.1% to 14.4% (300 to 850 km/s)
Temperature- Speed & Density - Speed Re	lationships				-10%	-72.1% to -14.4% (300 to 850 km/s)
01/01/1963 - 04/08/2024 ICMEs Removed	Top Left: Number of observations color-coded	Solar Wind Density (Scatter)	Solar Wind Speed (V)	n=(5.597e4)V ^{-1.534}	+10%	17.5%
Subject of the formation of the formatio	and binned by solar wind temperature and speed.			10101	-10%	-13.6%
	Top Right. Same observations sorted and binned	Solar Wind Density (1-D binned)	Solar Wind Speed (V)	n=(1.473e4)V ^{-1.316d}	+10%	14.9%
	by the steepness in the 2-day speed-time profile $\langle \Delta V \Delta t \rangle$.			B	-10%	-11.8%
	We fit the results with a linear relationship to	IMF Field Strength (Scatter)	Speed Temporal Gradient (dV/dt)	$\frac{B}{1} = 0.8561e^{290.7 < \frac{dv}{dt}}$	+10%	-9.67% to 10.71% (300 to 850 km/s)
300 600 900 1200 900 600 Vp [km s·1] Vp [km s·1]	obtain the temperature formulas.			< Bpr >	-10%	10.71% to -9.67% (300 to 850 km/s)
	Bottom Left: Number of observations color-coded	IMF Field Strength (1-D Binned)	Speed Temporal Gradient (dV/dt)	$\frac{B}{\langle B_{\rm H} \rangle} = 0.8492 e^{274.5 < \frac{dV}{dt}}$	+10%	-9.16% to 10.08% (300 to 850 km/s)
	Bottom Right: Same observations sorted and	1		< врг >	-10%	10.08% to -9.16%(300 to 850 km/s)
	binned by the steepness in the 2-day speed-time	SED Element Color Wind Crossed Jur	Speed Tracking	the CME and Background Wind		Summers and Conclusions
de 16	Sorting by the steepness in the speed time profile	SEP Flux and Solar wind Speed Jun	to Estima	ate the Speed Jump (ΔV)		Summary and Conclusions
10"	was developed in Elliott et al. (2005, 2012).	a shock KME stream 10 (b) shock	0.347 MeV 0.338 MeV 0.239 MeV 2014-04-14T04:01:00 - Frame #15	2014-04-14T04:36:00 - Frame #22 2014-04-14T07:46:00 - Frame #60	1. Corre	elations between solar wind and IMF parameters at exist owing to source properties in at the Sun and in
Vp [km s-1] Vp [km s-1]	We fit the results with a power law relationship to	g 10' 10'	(a) 600 -	600 - 400 - 135 g	the C	Corona, and the dynamic interaction that occurs en
Rising profiles (orange) <dvidt>stay > 7000km/silyear Faling profiles ((gint blue) <dvidt>stay > 7000km/silyear Files (gint blue) <dvidt=stay 7000km="" <="" silyear<="" td=""><th>obtain the density formulas.</th><td>± (c) (d)</td><td>500 - + + + + +</td><td>500</td><td>2 Redu</td><td>e from the Sun to Earth.</td></dvidt=stay></dvidt></dvidt>	obtain the density formulas.	± (c) (d)	500 - + + + + +	500	2 Redu	e from the Sun to Earth.
 Hat profiles (cark buc) (<0 V(01×100) ≥ / UUUkmis/year All the data (black) 	and the second			400	dens	ities derived from speed tracking and tomography
Field Strongth Vs Stoopposs in Speed Time Profile TopLeft Number of observations color-		300	200 - CNAE	200 CME	will e accu	nable more space weather quantities to be rately forecasted
coded in bins of the IMF field strength		2001 Apr 27 28 29 2003 Jul 26 27 2	18 29 100	100 - 0.5 gg	3. The f	form of empirical formulas used to forecast given
0101/1905 - 04/02/2024 FURIES REIT/040	speed-time profile for 2 day time	10 ² (e) wind(ster: 59 55* devices wind(ster: 74 55* for (1/2)) (f) (f) (f) (f) (f) (f) (f) (f) (f) (0 240 250 260 270 280 Azimuth (deg.)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	quan	tities highly impacts the resulting forecast error of
10 ¹	windows (< <u>Z</u> V/ <u>Z</u> t> _{2 day}).	r = 0.64	(b)	CME	• T	he resulting error will be much higher for a forecast
	binned by 2-day speed-time slope	مر المراجع الم	5×1		Te b	elationship depending on a high exponent of speed
10 ⁿ	CAVIAL>.				D W	vill for the forecasted quantity.
0.0020 0.0 0.0020 0.0020 0.0020	scales. Normalizing by the average			Dayeh et al. 2025; balltracking by Raphael Attie	4. We s	hould search for empirical forecast relationships
<avi at="">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></avi>	rotation accounts for this effect.	10 100 1000 100 [ΔV] (km/s)	(a) Example of the tracking of Balltracking from Baphael At	of plasma density structures with Magnetic tie. The red crosses are at the location of the ball	s	ds (V), changes in speed (Δ V), and densities (n).

Temporal profiles of H SEP intensities between 0.1-0.5 MeV in an ESP (a) and a CIR (b) event, along with the solar wind profiles (c,d). Scattered plots showing the correlation and the weighted fits between observed peak fluxes and the speed

jump (Δ V) in 54 ESP events and 74 CIRs (e,f) (Figure 1 from

Dayeh et al. 2025

(a) Example of the tracking of plasma density structures with Magnetic Balltracking from Raphael Attie. The red crosses are at the location of the balls that track the density structures. We also show an example of the detection and tracking of a CME's leading and trailing brightness patterns tagged in yellow. The structure of the density structure of the detection and tracking of a CME's leading and trailing brightness patterns tagged in yellow. The structure of the detection of the detection of the detection of the detection of tracking of a CME's leading and trailing brightness patterns tagged in yellow. The structure of the detection of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of the detection of the detection of the structure of the detection of

scale of the y-axis is 1px -9.36 solar radii ~ 10170 km. (b) Mean radial velocities as a function of the azimuthal position around the sun, estimated by averaging th motion of the balls of Magnetic Balltracking over -6.6 hr. The red cross and blue balls are the sum of the balls of the sum of th

error bars show the average velocity of three density structures tracked in a CME (vellow tags in (a) (Figure 2 from Daveh et al. 2025).

- For instance the exponents are smaller for *Δ*V than for V then when estimating the ESP peak flux (Dayeh et al., 2025).
 The balltracking in Dayeh et al. (2025) performed by
- Raphael Attie shows that the change in speed (Δ V) of the CME relative to the background wind can be