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Abstract

We have developed a proof-of-concept machine learning
model that forecasts high and mid latitude ionospheric
scintillation from solar and geomagnetic drivers. The
training datasets include UNAVCO and CHAIN receivers,
with temporal resolutions up to 5 minutes and spatial
resolution of 1° by 1°, from approximately 25° to 80°
latitude over 2015-2018. We calculated proxy
scintillation indices from wuse geodetic receiver
observations to mitigate the Ilimited number of
scintillation observations at mid-latitudes. The model’s
convolutional architecture captured spatiotemporal
dependencies of TEC, space weather drivers, and phase
and amplitude scintillation. The model generates one
hour probabilistic forecasts for phase and amplitude
scintillations, strongly outperforming a persistence
model. The model is deployed on an AWS-hosted cloud
environment that visualizes the model outputs on a map.

lonospheric Scintillation

 Spurious noise observed in the trans-ionospheric
satellite communication signals can cause errors in
Position, Navigation and Timing (PNT).

* Trans-ionospheric signal noise is caused by rapidly
varying electron density irregularities caused by
particle precipitation from energetic particles in the

magnetosphere [1,2,3]. %
GNSS

. Positioning
. I el g ' . : ' : '
Ionosphere e T T, TR Y T error
lkf‘@[,UldI‘ll.leS T— Y ' bt
- .‘ . ‘..
1000 - .
-, .k ’
Electro B
Hight| densi b
(km) \
60
| | ': * | e
Signal degradation . 'Y : ks Loy
‘ ‘l ’ ' a2 -~
and unlocked ' L ob g i
\‘ \‘ ': : ‘——— /
| $ Aeroplane
Receiver vV V GNSS position

and navigation

WM_,,

GNSS Receiver

* This precipitation is enhanced during increased
geomagnetic activity (storms and substorms),
triggered by solar wind fluctuations.

* lonospheric scintillation is quantified by amplitude (S,)
and phase (o) indices.
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Data & Model Description Prototype Model Results

 Canadian CHAIN receivers Model inputs: * To measure the model performance, we use the True

(25) provide high- = 1. Data Type Features Skill Score (TSS), which measures the model’s ability to
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. We follow the methods by Mrak et al. (2020) [4]. The V), Density, Pressure, Temperature scintillation forecast outperforms the baseline
. . . o
amplitude and phase metrics SNR, and o are: TEC [I\/.Iadr.|ga.l] TEC, gradlc?nt ofTEC _ rlnce model TSS of .27 by nearly 100%.
SNR, = SNR,' - F(6)%% SNR,' = /< 5SNRZ >—< 6SNR >2 Scintillation indices binary amplitude index e
R 1/, [CHAIN, UNAVCO] binary phase index
F(0) = ( - 6082(9)(R m thp)z) * Feature selection:
6. = /< OTEC? >—< 8TEC 2 o Temporal features (e.g. time-of-day, day-of-year) and e
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* Training/Testing dataset selection:

* Where the 6 indicates low-pass filtered data with a 0.1 o Based on regional index activity (e.g. SMR r)

Hz cgtoff frquency and TEC is .the total elec?tron content. 4 Training: June-July 2015 o=
TE.C |§ thg vertical TEC fognd wlth t.he mapplpg F(O) o Evaluation: July-September 2017 i
* Scintillation at. each ref:el.ver is defined individually based , Model Architecture selection: S
o ’Fhe. following heu”St'F by.measure.ments 2 standa.rd o Convolution layer synthesizes gridified TEC data; L mmes oo
deviations above the quiet-time (defined by days with o Dense layers introduce other input features; e L = i‘“‘éfc_:? S

Kp<4, minutes with SMR> -30 nT and SML > -200nT) o Outputs are probabilistic scalars
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- The confusion matrix compares true observations

(binary variable of yes (1) and no (0) phase scintillation)

> ; on the y-axis with the predictions from the model on

Activation _ the x-axis, on a per-sample basis.
Convnet -+ Pooling o Bl L _ Dense _ Linear _ Softmax . The model enjoys:
Layer Layer Dropout Layer

Layers o a relatively high specificity of 0.96;
o a relatively strong recall of 0.62;
o and a modest precision of 0.42.

Confusion Matrix (Evaluation on CHAIN + GNSS data)
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