
Conclusions and Future Work

● Conclusions:

●
● Embeddings enable fixed-length representations of irregular data, 

improving prediction models.

● DINN_eTEC demonstrates higher accuracy in storm-time 

predictions.

● Future Directions:

●
● Incorporate additional data sources like X-ray flux.

● Test larger embedding sizes and refine predictions of vertical 

profiles.

●
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Electron Density Modeling

Modeling ionospheric electron 
density is critical for improving 
satellite communication and 
understanding space weather. 
The integral of electron density, 
Total Electron Content (TEC), is 
heavily correlated and much 
more readily available. However, 
TEC is oddly shaped, which poses 
difficulties for traditional ML 
methods because of irregular 
shape and length. To address this, 
we focus on two tasks:

● Develop a technique to embed 
irregularly shaped data into 
fixed-length vectors using 
cross-attention.

● Apply the embedding 
approach to TEC and use the 
embeddings to improve 
ionospheric electron density 
predictions.

Motivation

CV Link

● We previously modeled electron density without TEC with Deeper Ionospheric Neural Network (DINN).
○ Models use location, time, and geomagnetic indices (kp, ap, dst, and f10.7) as inputs.
○ These models produce reasonable results but lack more descriptive ionospheric observations as inputs.

● We use embedded TEC information to supplement typical model inputs (DINN_eTEC).
○ We use a small embedding space of size 16 due to computational time, but plan to expand this.
○ Embeddings provide richer input data without significantly increasing model complexity.

● DINN_eTEC outperforms DINN in the general case.
● For storm-time predictions (high kp values), we have more mixed results.

○ DINN_eTEC shows better accuracy for peak electron density (nmf2), outperforming even models with 
historical and X-ray flux data (RDINN and RDINN_XRS, architecture not shown), likely due to a strong 
correlation between TEC and nmf2.

○ Peak altitude (hmf2) predictions are not as promising, likely due to the lack of vertical profile 
information in TEC that may be overfit.

TEC Embedding
● We compare embedding models to 

demonstrate that data can be embedded 
effectively and larger embedding spaces 
capture more information (Pearson correlation 
coefficients shown to the right).
○ We have various sizes of embeddings: 16, 

64, and 512 (noted as TEC_e#).
○ We also have a non-embedding comparison 

that directly maps input parameters (time, 
location, and geomagnetic indices)

● Embedding size acts as a trade-off between 
accuracy and computational resources.
○ Even using a small embedding space 

drastically improves reconstruction over a 
climatological approach.

○ Embedding and using only TEC data allows 
for better modeling than a model using 
geomagnetic indices instead.

● Compared to traditional CNN-based 
approaches, we notice worse performance at 
low sparsity, but at high sparsity the 
attention-based approach performs better.

● Correlation of the TEC_e16 vectors with 
commonly used electron density model inputs 
is low, indicating the model is capturing 
additional non-high-level information.

Conclusions and Future Work
● Embeddings enable improved modeling of electron density, with 

richer input features for ionospheric electron density models.

○ Using embedded TEC provides clear performance improvements 

over baseline models, particularly for nmf2.

● This work has an upcoming paper; we are currently working on:

○ Combining TEC and electron density histories together in a joint 

model that forecasts a few hours ahead TEC, electron density, and 

various geomagnetic indices.

● We also aim to:

○ Explore the possibility of using this approach to complete TEC 

maps (such as below, which uses the 512 sized embedding, but 

has not yet been validated for accuracy).

● Embedding TEC data allows us to convert irregularly shaped sequences into fixed-length vectors for 
machine learning models, which we train in an autoencoding approach using transformer-based 
models.
○ An encoder creates fixed-length embeddings, which can be used in other models.
○ A decoder reconstructs TEC from embeddings, which allows for training of the encoder.

● We model electron density with a feed-forward neural network.
○ Standard Inputs include location, time, and various indices (kp, ap, dst, and f10.7).
○ We augment the standard inputs with the embedded TEC.

● Data: TEC (Madrigal), e- density (CHAMP, GRACE, COSMIC-1/2), hmf2/nmf2 (GIRO ionosondes)
○ Splits: training (pre 2020), validation (2021), testing (2022–2023).
○ Preprocessing: TEC normalized; electron density and ionosonde data filtered and scaled.
○ Inputs: Geomagnetic indices (kp, ap, dst, f10.7) from NASA OMNIWeb
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● We perform a similar approach done with TEC 
data with historical electron density data.
○ We use the last complete hour of electron 

density data after embedding as an additional 
input.

○ The performance increases here are much 
less noticeable than with embedded TEC 
information.

○ Embedding electron density also ends up 
being worse than embedding TEC, likely 
because of the extremely high sparsity.


