Satellite Constellation Data to Drive Thermospheric Density Forecasting Capabilities

Eric K. Sutton¹, David Fitzpatrick², Nai-Yu Wang³, Tzu-Wei Fang⁴ ¹University of Colorado / SWx TREC, ²University of Colorado / Aerospace, ³NOAA / NESDIS, ⁴NOAA / SWPC

Synopsis:

Interactions between resident space objects in low-Earth orbit (LEO, i.e., orbits below ~1,000 km altitude) and the ambient atmospheric environment cause significant orbital perturbations. While LEO is a most desirable orbital regime from the standpoint of debris disposal, the uncertainty of an object's orbital trajectory is often a limiting factor in the accuracy of conjunction assessments used to determine when and if a collision-avoidance maneuver is needed. At the same time, the increasing population of LEO over the last 5 years has compounded the overall risk of collisions. By combining tracking data from recently launched small satellites, often in the form of high-rate GNSS observables or quantities derived thereof, with attitude and satellite geometry information, the thermosphere can be observed with unprecedented coverage. The necessary information is available, in various forms, from several mega constellations, including Starlink, Spire, and others. This talk will outline the progress, challenges, and limitations of working with commercial datasets as well as the promise of scientifically instrumented, targeted missions.

The Starlink Constellation				Densities from ~1,500	$R^2 = 0.971$ 100,000
Owner/Operator:	SpaceX	We are using the following data from SpaceX.		VI.U Starlink Satellites	Ę 10 ⁻¹² - ∠
Country of Origin:	United States	 Position & velocity ephemeris 		(June '22 – April '23)	
Application:	Internet service	 Attitude & panel articulation 			por respectively.
Website:	www.starlink.com	 Estimated non-conservative accelerations (on-board OD filter) 		 Very low bias/std with respect to HASDM 	
Spacecraft type:	Small satellite	Satellite geometry files	 Some satellites are anomalous, and can be easily filtered out using individual satellite health status (see unfiltered / filtered comparison below) ~1,500 v1.0 Starlink densities: Mean Bias (data/model): -4.5% 		
Launch Mass:	v0.9: 227 kg v1.0: 260 kg v1.5: ~306 kg v2m: 800 kg	 Periods of interest: June 2022—April 2023: ~1,500 v1.0 satellites February 2024: 		 * ~1,500 v1.0 Starlink densities: Mean Bias (data/model): -4.5% 	100 = 10 ⁻¹³

Orbit-Effective Densities from two Starlink Satellites (June '22 – April '23)

Assessing In-Plane Statistics and Data Quality (February '24)

Shell 5, Plane 14

- Grey: Raw Starlink (top), HASDM (middle), or ratio (bottom) orbit-effective densities from all satellite in shell 5/plane 14 orbits
- Black: 3-hourly binned & averaged densities from current shell 5 / plane 14 orbits
- Cyan: 2- σ error bars based on variability within the current shell 5 / plane 14 orbits

Space Weather Workshop 2025 Session: I-T Research and Applications Wednesday, March 19th, 2025 Poster #31

Acknowledgments: The authors gratefully acknowledge support for this project from NOAA-NESDIS