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Geomagnetically Induced Currents

• GICs are produced during 
Geomagnetic storms.

• Flow through long conducting cables 
such as power lines, pipelines.

• Large amplitude spikes can cause 
voltage destabilization in a power 
system.

• Sustained moderate amplitude GICs 
can cause overheating in the system. 
Pipelines may become susceptible to 
corrosion.

Sun-to-mud
• Eruption from Sun in form of 

Coronal Mass Ejection (CME) 
perturbs Earth’s geomagnetic field (B-
field).

• Currents flowing through the 
geospace (J) (Magnetosphere and 
Ionosphere)  respond to the 
perturbation and further produce dB 
(Ampere’s law).

• Change in B-field produces 
geoelectric field (Eg) per Faraday’s law.
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Figure 1: Illustration of how Sun-to-mud chain produces 

GICs. Underlying Equations shown 

Key idea : GICs are a localized phenomena. Geoelectric field is a function of the 
interaction between B-field fluctuations and ground conductivity often formulated in 
frequency domain as E(f) = Z(f) B(f) where Z(f) is the ‘skin depth’.

Motivating Question: Although GICs are recorded globally, how do they differ with respect to local time? What localized Magnetosphere-Ionosphere activity drives these magnetic field fluctuations?

DATA AND METHOD

September 2017 Geomagnetic Storm

Continuous Wavelet Transform (CWT) Analysis
Multiscale Decomposition of GIC and dBH timeseries
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8th 11 to 19 UT
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Long duration storm known for the 
‘double dip’ in DST index.
Storm arrived early on 7th with northward 
IMF Bz and High density (not shown 
here) => Not Geoeffective

IMF Bz turns southward with pressure 
pulse at 23 UT on 7th => Geoeffective

IMF Bz turns northward from 02 – 11 UT 
on 8th -> First Recovery

IMF Bz turns southward 11:30 UT on 8th -
> Magnetic Cloud arrival => Geoeffective
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USA: North American Electric Reliability Corporation (NERC)
Finland: Mantsala Pipeline, Finnish Metereological Institute (FMI)
New Zealand: HalfwayBush T4 station (HWB) altered from Figure 5 of Clilverd 2019

1-second data downsampled

30-minute background subtraction to 
calculate differential TEC

Figures 2-3 of Ferradas et al. 2023 due to limited 
access to numeric data. 
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Data Fusion
Observations from 
ground to space provide 
context for the multiscale 
time-frequency 
distribution shown in 
Continuous Wavelet 
Transform (Waghule et 
al. 2024)

Figure: CWT of GIC shown in blue-yellow heatmap and CWT of dH/dt shown in green-yellow heatmap. 

Corresponding timeseries overlain on heatmap. Black contour lines shows area above background noise. 

11-15 UT interval highlighted for Data Fusion shown to the right 

Intermagnet (US), 
IMAGE (Finland), 

Tsunami (NZ)

Figure: Data Fusion of Observations from Ground to Space. Red line marks the arrival time of Magnetic Cloud. Bottom to top: 1) GICs in Eastern US, Finland, and 

New Zealand. 2) Timeseries of Horizontal B-field component vectors (e.g. eastward overhead currents produce northward ground dB perturbation) 3) Keogram of 

dTEC. Green/Purple indicates TEC enhancement/depletion. 4) Insitu proton energy flux measurements at 6.6 Re (GEO). Satellites identified are closest to the MLT of 

interest.

Continuous Wavelet Transform 
• Multi-scale (multi-minute/broadband) disturbance in GIC and dBH corresponds to the two intervals at all three locations.
• High Frequency fluctuations especially in the Pi2 range indicate potential substorm injections (Saito 1969; Waghule 2024)
• More rapid fluctuations are recorded in the second interval compared to the first, indicating high global substorm activity.

10-15 UT Interval
• Key points from Data Fusion of observations:

How do co-occurring GICs vary with local time?
• Globally occurring GICs have different wave forms and peaks within the larger 

disturbance. Between 12-15 UT, GICs peak at night first, then dawn, and 
afternoon. Mid-latitude high frequency fluctuations indicates equatorward 
expansion of auroral oval.

What localized Magnetosphere-Ionosphere (M-I) activity drives these magnetic field 
fluctuations? 

• The 10-15 UT interval GICs at all three locations were driven by substorm 
injections in the magnetosphere, but the E and F region data indicate different 
activity. 
• Eastern US sector shows substorm PPEF
• This suggests that the coupled M-I system, which is a function of local time, 

controls the mesoscale ground B-field fluctuations.

Future work: 
What drove the largest GIC spikes in Eastern US at 23 UT on 7th and in Mantsala at 
17:54 UT?
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• E-region: Predominantly westward overhead ionospheric currents
• F-region: Sudden Global Disturbance (SGD, Zhang et al. 2023)  at 12 UT

• Prompt Penetration Electric Field (PPEF)
• Magnetosphere: small-scale Injections

• E-region: rapidly fluctuation overhead ionospheric currents 
• Likely wave activity

• F-region: Expansion of auroral oval and intensification of convection E-field
• Magnetosphere: Injection at 12 UT followed by smaller injections from 13 UT.

• E-region: Predominantly westward overhead ionospheric currents - abrupt change at 12:45 UT 
• F-region: Large Travelling Ionospheric Disturbances (TIDs)
• Magnetosphere: Three distinct injection signals at 12, 14, 14:30 UT

Shows time-frequency distribution – helps in 
understanding significant periodicities
Original work: Torrence & Compo (1999) + 
Grinsted et al. (2003)

• GICs were recorded globally during the G4 storm of September 2017
• Largest GICs in respective locations were recorded at different times

• US – 23:03 UT on 7th; NZ – 12:45 UT on 8th; FI – 1754 UT on 8th  
• More rapid fluctuations during the second interval (max SYMH < -146 nT) compared to the first interval (max SYM-H < -115 nT)
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