

Nitrous oxide observations from GOSAT-2/TANSO-FTS-2: Evaluation and potential

Jean-Luc Attié¹, Philippe Ricaud², Naoko Saitoh³, Prabir Patra^{6,3}, Isabelle Pison⁴, Adrien Martinez⁴, Rémi Chalinel⁵, Béatrice Josse², and Didier Hauglustaine³,

1 : LAERO-Laboratoire d'Aérologie, Université de Toulouse, UMR CNRS 5560, France; 2 : CNRM, Météo-France, CNRS, Université de Toulouse, UMR CNRS 3589, France 3: Center for Environmental Remote Sensing, Chiba University, Japan 4: Laboratoire des Sciences du Climat et de l'Environnement, CNRS UMR 1572, Gif-sur-Yvette, France; 5: WaltR-Parc Technologique du Canal, Ramonville Saint Agne, France; 6: Research Institute for Global Change, JAMSTEC, Yokohama, 236-0001, Japan

Nitrous oxide (N₂O), with a lifetime of approximately 120 years, is the third most significant greenhouse gas after carbon dioxide (CO₂) and methane (CH₄), contributing to global warming. It has a global warming potential 300 times greater than CO₂ over a 100-year horizon. N₂O emissions are not regulated by the Montreal Protocol and, although they are subject to the Kyoto Protocol, the observed annual increase of ~0.25% in N₂O over the past decade is expected to continue until 2100. N₂O emissions arise from both biotic (living organisms) and abiotic (environmental factors such as water, soil, and air) processes, with sources being 1) 60% natural and 2) 40% anthropogenic. In 2019, the annual average concentration of N₂O in the atmosphere was approximately 332 parts per billion per

Instrument characteristics

Since 2008, thermal infrared (TIR) measurements from satellite instruments such as MetOp/IASI, and GOSAT-2/TANSO-2 are available and allow access to total columns and vertical profiles of tropospheric N₂O. Initial studies have shown that it is possible to reveal long-range transport via temporal and spatial variability of N₂O in the tropics (Ricaud et al., 2009) with IASI and over the Mediterranean (Kangah et al., 2017) with TANSO. In this table, we present the instrument characteristics of TANSO-2 and IASI for which the observations are compared in this poster.

	GOSAT-2/TANSO-2	MetOp/IASI
L2 Version	GOSAT-2 provided on	2.0; 2.1 from TN ₂ OR
	01/04/2022	
Daviad		

volume (ppbv).

Despite its importance, tropospheric N₂O measurements and surface emission sources remain globally understudied, with limited surface observations. However, sparse FTIR/NDACC instruments monitor N₂O profiles, and satellite observations in the thermal infrared (TIR) from IASI (Ricaud et al., 2009; Chalinel et al., 2022), AIRS, and GOSAT (Kangah et al., 2017) provide valuable global data. GOSAT-2/TANSO-FTS-2, which has some sensitivity to lower tropospheric N₂O, offers potential for studying surface emissions using inversion methods.

This study evaluates the quality of GOSAT-2/TANSO-FTS-2 N₂O observations for 2019 (version 1.06). Comparisons with NDACC N₂O profiles, IASI from TN₂OR (Chalinel et al., 2022), and chemical transport models will assess the reliability of GOSAT-2 measurements at different atmospheric levels. The study includes discussions on measurement sensitivities, evaluation results, and the potential for inverting N₂O surface fluxes.

		2011, 10, 101 2013	
Spectral band	1,188-1,800 cm ⁻¹	1,210-2,000 cm ⁻¹	
Spectral sampling	< 0.2 cm ⁻¹	0.25 cm ⁻¹	
Footprint	10 km	12 km	
Simultaneous	N ₂ O, CH ₄ , H ₂ O, T	N ₂ O, CH ₄ , H ₂ O, T, Ts,	
retrievals		emissivity	
A priori	Dynamical = model	Fix over the globe	
Pixels used	Nadir-viewing &	All	
	Sunglint data		

NDACC Station Locations

We compared the TANSO-2 satellite data with the NDACC data between March 2019 and March 2020. The NDACC sites are distributed globally. Below, we present the yearly profiles of the different observations. We selected NDACC sites where the data were available and scientifically acceptable (N₂O greater than 300 ppbv). We applied the TANSO-2 averaging kernel to the NDACC data, considering them as the reference. For Kiruna, Arrival Heights, and Lauder, TANSO-2 is systematically biased high, likely due to the extreme northern or southern positions of these sites. For Rikubetsu, we observed similar behavior above 600 hPa, while for the other sites, the agreement is fairly good along the profile.

N2O Profiles from March 2019-March 2020

Moreover, we compared the data month to month at two GOSAT-2 levels, 630 hPa and 316 hPa. For Kiruna and Arrival Heights, the bias is 2.3 and 5.8 ppbv respectively, and remains constant throughout the year at both levels. Interestingly, despite the different locations, the behavior of the data is similar at these two sites. However, for Rikubetsu, the behavior is distinct. Here, the bias is significantly higher at 316 hPa with a mean bias of 5.77 ppbv, compared to 2.49 ppbv at 630 hPa. Notably, both datasets show a small decrease in N₂O levels, which is a surprising finding. Additionally, it is important to highlight that the variability of the GOSAT-2 data is higher than that of the NDACC data, indicating a greater range of fluctuations in the satellite measurements. Overall, these observations suggest that while there are consistent patterns at some sites, variability at others like Rikubetsu indicates the need for further investigation to understand the underlying causes.

Comparison GOSAT-2/TANSO-FTS-2 vs NDACC

Comparison with IASI TN₂OR

In the figure (left), the N2O observations for March, April, and May 2019 from both instruments at approximately 300 hPa reveal local maxima over Africa, and to some extent over India and the oceans in the tropical band. However, the contrast between tropical latitudes and higher latitudes is not well captured in the TANSO-2 data. Noisy pixels persist in the southern hemisphere due to regions with very low Degrees of Freedom. The satellite pixels are averaged into 1.26° x 2.5° boxes, compatible with the LMDz model, and the resulting standard deviation, which represents the variability, shows similar values. The variability is higher over the continents for both datasets, but the N2O concentration from TANSO-2 is slightly lower than that from IASI.

In the figure (right), the N₂O at 630 hPa from TANSO-2 still shows high local maxima over Africa and over India that are not present in the IASI data. This is likely due to the lack of sensitivity of IASI at this vertical level. In addition, lots of pixels (white areas) do not reach the criteria of measurement sensitivity (MS) defined below, which is higher than 0.8. One can see that the variability is still larger over the continents and TANSO-2 shows a larger variability compared to IASI. Moreover, the TANSO-2 N₂O distribution at 630 hPa presents some areas that are not correlated to the distribution at 316 hPa highlighting a better vertical sensitivity.

LMDz

March-April-May 2019

Comparison with Chemistry Transport Models

Three chemistry transport models were used to evaluate the TANSO-2 N2O horizontal distributions at 300 hPa for MAM 2019. The maximum over Africa, as calculated by MOCAGE, aligns well with the observations, whereas LMDz and MIROC-4 indicate a N2O maximum over South America. The global scale variability in MOCAGE (approximately 10 ppbv) better reflects the measurements by TANSO-2, while the variability in LMDz and MIROC-4 is significantly lower, at less than 2 ppbv. These differences can likely be attributed to the varying convection schemes and emission inventories employed by the models. Additionally, the model data were convolved with the TANSO-2 averaging kernels (AKs) for a more accurate comparison.

Conclusions

The GOSAT-2/TANSO-2 (v01.06) N_2O observations are available from March 2019 to March 2020. Two independent pieces of information are present: one in the upper troposphere at about 300 hPa, consistent with IASI data, and another one in the middle troposphere around 600 hPa, providing an added value compared to IASI. When compared to NDACC observations, TANSO-2 data exhibit systematic biases at certain sites. For example, at Kiruna and Arrival Heights, TANSO-2 consistently shows higher N₂O levels, likely due to the extreme northern and southern positions of these sites. At Rikubetsu, the bias is more pronounced at 316 hPa than at 630 hPa, but a notable decrease in N₂O which is unexpected, is observed in both datasets. This indicates that while there is a general agreement in the negative slope of N₂O levels, the extent of variability is greater in the TANSO-2 data compared to NDACC. A higher variability in TANSO-2 measurements

	MOCAGE	LMDz	MIROC-4
lat x lon	1°x1°	1.27°x2.5°	2.77°x2.8°
Number of vertical levels	60	39	67
Convection scheme	Bechtold et	Tiedke et	Arakawa-
	al	al.	Schubert

References:

- Chalinel, R., et al., Global-scale observation and evaluation of nitrous oxide from IASI on MetOp-A, Remote Sens., 2022.
- Kangah, Y., et al., Summertime upper tropospheric nitrous oxide over the Mediterranean as a footprint of Asian emissions, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026119, 2017.
- Ricaud, P., et al., Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: Implications for transport processes, Atmos. Chem. Phys., 9, 3947-3956, 2009.
- Ricaud, P., et al., The Monitoring Nitrous Oxide Sources (MIN₂OS) satellite project, Remote Sensing of Environment, 266, 112688, https://doi.org/10.1016/j.rse.2021.112688, 2021.

compared to NDACC is highlighted.

Three chemistry transport models (MOCAGE, LMDz, MIROC4) were used to evaluate the horizontal distributions of N₂O observed by TANSO-2 at 300 hPa from March to May 2019. MOCAGE shows a maximum N₂O concentration over Africa, consistent with the observations, while LMDz and MIROC-4 indicate a maximum over South America. The global scale variability in MOCAGE, approximately 10 ppbv, better reflects the TANSO-2 measurements, whereas the variability in LMDz and MIROC-4 is significantly lower, at less than 2 ppbv. These differences are likely due to the varying convection schemes and emission inventories used by the models.

In conclusion, these new results demonstrate the great potential of TANSO-2 for probing the middle to lower troposphere, which is promising for estimating N₂O surface fluxes.

Contacts: jean-luc.attie@univ-tlse3.1

