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Introduction

MethaneSAT XCH4 observations offer an unprecedented
combination of scale (sweep scans over 200 km x 200 km targets),
resolution (~140 m x 400 m), and precision (~2 — 4 ppb @ 1.5 km2).

They provide a unique opportunity for the comprehensive
characterization of regional methane emissions,

including detection and quantification of large (> 200 kg/hr)
point sources and mapping of aggregate and area sources.

While established algorithms exist for the quantification of

point sources and mapping aggregate and area sources,

these algorithms must be combined carefully to maximize their
utility and ensure accurate accounting of total regional emissions.

Our approach is staged — we start with point source detection and
guantification using the divergence integral method, then remove
the enhancement due to point sources from the observations, then
guantify aggregate and area sources using a Markov chain Monte
Carlo solution to the inverse problem with a Jacobian from the
Stochastic Time-Inverted Lagrangian Transport (STILT) model.

Example MethaneAIR Observations From
The Delaware Basin in Texas/New Mexico
August 6, 2021
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Jacobian:

STILT Lagrangian Particle Dispersion Model
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Regional influence of emissions modeled using
column-weighted STILT model (Lin et al., 2003, Fasoli et al., 2018).

STILT for production is deployed on Google Cloud with Flyte.
An ensemble of meteorological models is available for STILT.

Point Source Emissions:
Divergence Integral Method

~ Point source emissions are estimated independently
using a method developed specifically for point source estimation.
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= We apply Gauss’ Theorem
to compute total flux out of box around point source.

Stanford Controlled Release (60 second mean)

(I)surf — % v - ﬁ((XCH4 — <XCH4>rect.) * Neolumn * MCH4)dS
ov=Ss

= Growing the box to different scales captures
atmospheric variation and characterizes uncertainty.

~ Results validated by blind controlled release.

Chulakadabba et al., 2023
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Background/Boundary Inflow:
Inverse model of fluxes outside the domain

Boundary Inflow Pseudo-Fluxes Enhancement (Obs. - Bg.)
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- The background concentration is not constant
at the scale of a MethaneSAT/AIR scene.

- We use an inverse model of boundary inflow
“pseudo-" fluxes outside domain plus intercept.

~ This model acts as a high pass filter with a
bandwidth that increases towards the downwind.

Remove Point Sources From Observations
to Condition Area Source Inversion

Masking a Plume
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- It is essential to account for entire contribution of point sources,
which goes beyond what is detectable as a mask.

= We model the impact of point sources by propagating them
through the Jacobian. This conserves the total enhancement.

~ We apply a blur to the sources to reduce error dipoles.
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Area Source Emissions:
Non-negative MCMC Inverse Model

Posterior Emissions

Point sources:
30 plumes
31,100 kg/hr (15,600 - 46,700)

Emissions
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Area sources:
l 57,600 kg/hr (40,300 - 74,900)

Total emissions:
88,700 kg/hr (62,100 - 115,300)

- We use a Markov chain Monte Carlo method
to solve non-negative area fluxes (following Miller et al., 2014),
reporting the median to avoid model bias.

- We apply an uninformative prior since inventories represent long
term means and MethaneSAT/AIR data can swamp a prior.

= We use the Stan software for high quality MCMC optimization.

Conclusions

- The greatest challenges to emissions retrievals at the scale of
MethaneSAT/AIR are:

~ accurately modeling transport in spite of meteorological error.

- accounting for point sources in the area source inversion
without double counting methane or inducing dipoles.

- modeling the boundary inflow concentration.
- optimizing inverse estimates reliably at scale.

- The strategies in this poster present the MethaneSAT/AIR
solutions to these challenges.

- Areliable operational L4 product is possible and will be made
public with a goal of early 2025.
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