Assessment of uncertainties in CO₂ column retrieved from ACDL onboard DQ-1

Xifeng Cao¹, Lu Zhang¹ and Xingying Zhang^{1,*}

¹ Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for

Space Weather) and Innovation Center for FengYun Meteor-ological Satellite (FYSIC), China Meteorological Administration (CMA);

21113020001@m.fudan.edu.cn(X.C.); zxy@cma.gov.cn (X.Z.); zhanglu_nsmc@cma.gov.cn (L.Z.)

Abstract

Atmospheric carbon dioxide (CO_2) is the primary anthropogenic driver of climate change, accounting for more than half of the total effective radiative forcing (ERF). The Aerosol and Carbon Detection Lidar (ACDL) instrument, as the first spaceborne integrated path differential absorption (IPDA) light detection and ranging (Lidar), was successfully launched in April 2022 onboard the DaQi-1 (DQ-1) satellite. ACDL enables observations to be taken at all latitudes and all times of year owing to their illumination, which allows a new perspective to quantify the global spatial distribution of atmospheric CO_2 . In this paper, the performance of the IPDA lidar was evaluated to meet the global weighted column-averaged dry air mixing ratio of carbon dioxide (XCO_2) measurement requirements of less than 1 ppm. The random errors resulting from the noise associated with the detection of the lidar signals were assessed. The simulations of ACDL lidar were conducted. Results showed that the random error was distributed in the range of 0-1.5 parts per million (ppm) with 50 km averaging over land surfaces and 100 km averaging over oceans. In addition, the systematic errors arising from the uncertainty of atmospheric factors, the HITRAN database, instrument parameters, and other factors were also analyzed. The systematic errors were about 0.42 ppm, which meet the requirements of 1 ppm. This study can help to improve the understanding of the measurement uncertainties and provide a reference for CO₂ retrievals and validation.

Methods

 \diamondsuit The random and systematic errors in ACDL measurements were evaluated based on simulations. The differences between the XCO₂ retrievals with and without interference were used to assess the impact of the uncertainties on CO₂ measurements.

Introduction

 \diamondsuit Atmospheric carbon dioxide (CO₂) is recognized as the most important component of the greenhouse gases, the concentration of which has increased rapidly since the pre-industrial era due to anthropogenic emissions of greenhouse gases (GHG). However, CO₂ sources and sinks remain poorly understood, especially in dynamic regions with large carbon stocks and strong vulnerability to climate change

Active space sensors enable observations to be taken at all latitudes and all times of year owing to their own illumination compared to passive remote sensing. Additionally, the small footprints allow measurements through gaps in clouds, increasing data availability.

Passive

Active

Results

The impact of surface reflectance and altitude on random errors of a single shot

	Error source	RSE	Absolute error	Uncertainty
			(ppm)	for CO ₂
Atmosphere	Surface pressure	0.033%	0.11 ppm	0.5 hPa
	Temperature	0.046%	0.15 ppm	0.5 K
	H ₂ O mixing ratio	0.015%	0.05 ppm	5%
Line	Line strength	0.021%	0.07 ppm	2%
parameters	Line transition	0.039%	0.13 ppm	0.001 cm ⁻¹
	Air-broadened half width	0.012%	0.04 ppm	2%
	Self-broadened half width	0.000%	2.44×10 ⁻⁵ ppm	2%
	Temperature scaling	0.001%	0.004 ppm	2%
	exponent of air			
	Temperature scaling	0.000%	1.26×10 ⁻⁵ ppm	5%
	exponent of air			
	Pressure shift of air	0.009%	0.03 ppm	0.001 cm ⁻¹
	Pressure shift of self	0.000%	1.38×10 ⁻⁵ ppm	0.001 cm ⁻¹
Transmitter	Pulse energy	0.072%	0.24 ppm	5×10^{-4}
/Receiver	Bandwidth	0.046%	0.15 ppm	40 MHz
	Frequency drift	0.030%	0.10 ppm	0.3 MHz
	Spectral purity	0.033%	0.11 ppm	99.95%
	Path length	0.021%	0.07 ppm	3 m
Other factors	Pointing misalignment	0.030%	0.10 ppm	0.06 mrad
	Temporal interpulse	0.015%	0.05 ppm	$\Delta Q/Q < 10^{-4}$
	separation			

Conclusion

The random errors is negatively correlated to the surface reflectance and the altitude of echo signals.
The systematic errors were about 0.42 ppm, which is meet the requirements of 1 ppm.

References: 1. Amediek, A.; Fix, A.; Ehret, G.; Caron, J.; Durand, Y. Airborne lidar reflectance measurements at 1.57 µm in support of the A-SCOPE mission for atmospheric CO₂. *Atmos. Meas. Tech.* 2009, *2*, 755–772. https://doi.org/10.5194/amt-2-755-2009.

2. Wang, Q.; Mustafa, F.; Bu, L.; Zhu, S.; Liu, J.; Chen, W. Atmospheric carbon dioxide measurement from aircraft and comparison with OCO-2 and CarbonTracker model data. *Atmos. Meas. Tech.* 2021, 14, 6601–6617. https://doi.org/10.5194/amt-14-6601-2021.

3. Tellier, Y.; Pierangelo, C.; Wirth, M.; Gibert, F.; Marnas, F. Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN. *Atmos. Meas. Tech.* 2018, *11*, 5865–5884. https://doi.org/10.5194/amt-11-5865-2018.