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Overview 0CO0-2 data enables understanding the response of NHL
carbon cycle to extreme climate events, like heatwaves

One of the largest uncertainties in projected greenhouse gas concentrations and temperature trends is the

impact from terrestrial and marine carbon-climate feedbacks in the Northern high-latitudes (NHL) Information derived from OCO-2 Xco> and SIF retrievals have been integrated with MODIS remote sensing (land

Current operational space-based missions such as OCO-2 (and planned future missions such as the CO2M surface and vegetation products) to test specific hypotheses about the drivers and impacts of environmental
constellation) with their global observational coverage and coincident measurements of SIF and Xcqo», have the change on the Arctic-Boreal carbon cycle. For the time period of OCO operations, major heatwaves are evident
potential to inform differences in carbon cycle dynamics over large sub-continental scales. In this project, funded over Siberia in 2020 and north-west North America in 2021 (Figure 5). The 2020 Siberian heatwave was
through NASA ROSES OCO Science Team AO, we have improved our knowledge of CO, retrievals over snow notorious - it extended from at least January all the way through summer. Higher spring and early summer

and ice surfaces and leveraged the space-based vantage point to quantify Arctic-Boreal carbon balance, temperatures increased vegetation productivity, as suggested by the OCO-2 MIP NBE anomalies (Figure 6).
diagnose its current state (net source or net sink or approximately carbon neutral) and spatiotemporal patterns. . As summer progressed, the unrelenting high temperatures had cascading

Impacts as solls dried, vegetation productivity declined (Figures 7-8) and wildfires
continued to occur across the region (Madani, Berner, Chatterjee et al., in prep.).

0CO-2 coverage over the Northern hlgh-latltudes

OCO-2’'s space-based vantage point and X-0,, SIF measurements have been

Fig. 1 (LHS): Spatial critical for understanding the impact of these heatwaves on the magnitude and
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cycle dynamics over the Northern high-latitudes, capturing changes unfolding over that critical domain and its
interaction with the global carbon cycle.
Development and implementation of a neural network-based filtering approach further increases throughput in late

winter and spring months (Figure 4) - this new filter not only dramatically expands OCO-2 observational coverage While our current retrievals from OCO-2 are a significant improvement over previous versions, we continue to
in the spring shoulder season but also increases the overall mean precision (relative to high-latitude TCCON sites) push_the boundaries by refining our f_lltgrmg and blaslcorrectlon approaches and modifying th_e_ core retrieval
for the entire season. We are letting through more data, but more “good-quality” data and removing outliers. algorithm to better capture characteristics of snow & ice-covered surfaces. For example, a critical piece of work

that will be concluded this year is the testing and implementation of a BRDF model describing snow surface
reflection, polarization and spectral dependence at different wavelengths within the ACOS algorithm. We
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Fig. 4 (a-d): Percent increase in throughput of “good-quality” soundings by using the neural network filter relative to the standard QC filter employed in v11.1/v11.2. Results I * l ,
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are shown for one representative year, 2018. (e) Histogram of throughput over Siberian taiga shows clear increase in soundings during late winter and spring months. (f) COLORADO STATE (%r;\\g:lor]er:ﬁg?rglire?:ati ue Canada .
Time-series of X4, and throughput shows a “cleaner” looking weekly mean X, with less outliers, thus potentially improving flux inversions and scientific analysis. UNIVERSITY ° )




