

Session: *Regional-to-Global Fluxes* **Investigating CO₂ space-time variability in satellite - chemistry transport model differences using aircraft measurements**

Chiranjit Das¹, Ravi Kumar Kunchala¹, Prabir K. Patra^{2,*} (prabir@jamstec.go.jp), Naveen Chandra²

¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India ²Research Institute for Global Change (JAMSTEC), Yokohama 236-0001, Japan

1. Overview

Accurate accounting of surface CO_2 flux is crucial for policymaking toward mitigation of greenhouse gases emissions for limiting global warming below 1.5 or 2.0 °C by 2100. This ambition requires accurate and spatiotemporally dense coverage of satellite CO_2 monitoring and application of top-down inversion system. Our study reports (probable) systematic biases in OCO-2 satellite retrievals (version 10r) through comparison with highly accurate aircraft CO_2 measurement in an inversion system.

2. Data

CO ₂ dataset	Data source
1.Aircraft vertical profile (VP) of CO ₂	 Atmospheric Tomography Mission (ATom) and JAL/NIES CONTRAIL from obspack_co2_1_ GLOBALVIEWplus_v6.1 (Schuldt et al., 2021) Brazilian Amazon VP of CO₂ from four aircraft sites (SAN, ALF, RBA, TEF) (Gatti et al., 2021)
2. Surface CO ₂	 Global in-situ sites from obspack_co2_1_GLOBALVIEWplus_v6.1 WMO WDCGG (World Data Centre for Greenhouse Gases)
3. Column CO ₂ (XCO ₂)	 NASA/JPL OCO-2 Level–2, version 10r (O'Dell et al.)

5. Results

5.1 MIROC4-ACTM comparison with OCO-2 and surface CO₂

IF Mismatch between XCO_2^{ACTM} and OCO-2 are observed over land than ocean likely due to uncertainty in prior flux in land biosphere than the oceanic CO₂ exchange [Fig. 2a]

 $\mathbb{P} XCO_2^{ACTM}$ shows seasonally repeating difference with respect to OCO-2 observed XCO₂ [Fig. 2b], as opposed to surface CO₂ [Fig. 2c]

5.2 CO_2^{ACTM} difference against XCO₂ from Aircraft and OCO-2 5.2.1 North America, Southern Ocean, Pacific, and Atlantic

Fig. 3: XCO_2^{ACTM} difference with OCO-2 and aircraft CO₂ along several ATom aircraft campaign tracks.

3. Transport model

Transport Model	MIROC4-ACTM
Prior	$FG = CO_{2,ff (GridFED)} + CO_{2,lnd (CASA-3hr)} + CO_{2,ocn (Taka-Ocn)}$
ACTM XCO ₂	$XCO_2^{ACTM} = \sum_i CO_2^{\text{priori}} \cdot dp_i + \sum_i A_i \cdot dp_i \left(\sum_i CO_2^{ACTM} i - \sum_i CO_2^{\text{Prior}}\right)$

The Details on forward and inversion can be found in Chandra et al. (2022); Das et al. (2022), whereas XCO_2^{ACTM} calculation is in Patra et al. (2017)

4. Data analysis

Aircraft vertical profiles of CO₂ is subdivided into three tropospheric layers LT, MT, UT, and tropospheric Column or Aircraft XCO₂

Mismatch of ACTM against
 OCO-2 XCO₂ and aircraft CO₂
 at vertical layers are
 evaluated considering
 airmass/pressure layers of
 partial columns (Fig. 1)

CO_2 concentration (ppm)

Fig. 1: Vertical profile of CO_2 from aircraft and ACTM for total column calculation, and the definitions of tropospheric layers LT (lowest-2 km), MT (2-5 km) and UT (5-8 km) are denoted with different colors.

5.2.2 Amazon

Fig. 4: CO₂ differences at the Amazon aircraft sites

5.3 Conclusion

■ Largest mismatch (mean and variability) of XCO_2^{ACTM} against OCO-2/Aircraft XCO₂ observed over North America and neighbours in LT are due to uncertainty in prior land flux.

Best match is observed over remote tropospheric air in Southern Ocean, also in Pacific and Atlantic Ocean sectors due to less impact of land airmass.

Image Largest mismatch of ±12 ppm is found in LT at ALF, RBA and TEF specific aircraft measurement site. Also, a systematic difference against OCO-2 XCO₂ is evident, but mostly less than 1 ppm.

☞ Differences also arise due to illrepresentation of sub-grid scale process in MIROC4-ACTM due to coarse resolution 2.8°×2.8°, which are further evident at the CONTRAIL airport sites

☞ Systematic retrieval bias is evident in OCO-2 across time period with pronounced effect in southern hemisphere ocean region.

IP Most model-CO₂ differences exist in LT because of uncertainty in prior flux, and coarse model resolution. MIROC4-ACTM simulated CO₂ at MT, UT well by capturing the large scale dynamical transport.

