

VOC Methane emissions from oil and natural gas production in the Denver-Julesburg basin, Colorado, inferred from TROPOMI observations Barbara Dix¹, Alexander C. Bradley^{1,2}, Fergus Mackenzie³, and Joost de Gouw^{1,2} 1 CIRES, 2 Department of Chemistry, 3 BlueSky Resources, Boulder, CO

https://sites.google.com/view/de-gouw-lab

Background

- Oil and natural gas (O&G) production is associated with methane (CH₄) emissions.
- These emissions are generally not well monitored. Satellite observations can help.

Instruments & Methods

- We aim to infer methane emissions from O&G production using CH₄ observations TROPOspheric Monitoring the from Instrument (TROPOMI) and the divergence technique.
- TROPOMI provides daily global coverage at ~1:30pm local time, with a footprint of 7 x 5.5 km² for CH₄.
- Divergence Technique: Horizontal gradients in background corrected satellite vertical columns, Vcorr, multiplied with horizontal boundary layer wind fields, **u**, provide source location and strength of underlying emissions, E (following Sun, 2022 and Veefkind et al., 2023 for background correction): $E = \mathbf{u} \cdot \nabla V_{corr}$
- Tensorflow machine learning (ML) deep transfer learning model framework was used to train an annualized model on 2018-2022 TROPOMI data, then retrained on monthly data subsets. Target data was GOSAT proxy retrieval measurements (see schematic below).

References

Sun, K. (2022). Derivation of emissions from satellite-observed column amounts and its application to TROPOMI NO2 and CO observations. *Geophysical Research Letters*, 49, e2022GL101102. Veefkind, J. P., Serrano-Calvo, R., de Gouw, J., Dix, B., Schneising, O., Buchwitz, M., et al. (2023). Widespread frequent methane emissions from the oil and gas industry in the Permian basin. Journal of Geophysical Research: Atmospheres, 128, e2022JD037479. Francoeur, C. B.; McDonald, B. C.; Gilman, J. B.; Zarzana, K. J.; Dix, B.; Brown, S. S.; de Gouw, J. A.; Frost, G. J.; Li, M.; McKeen, S. A.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Thompson, C.; Warneke, C.; Trainer, M. (2021). Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environ. Sci. Technol. 55 (13).

Acknowledgements

This work is financially supported by the Colorado Department of Public Health and Environment. We are grateful to Enverus for providing access to the DrillingInfo database.

Sensitivity study for the Permian basin (strong signals/high data coverage) shows:

- not happen in theory.
- source locations (Fig. 1).

Figure 1: Results of sensitivity study on deriving methane from 2018-2022 CH4 VCDs over the Delaware using the Bremen WFM-DOAS product, sub-basin, separated by boundary layer wind speed bins

Figure 4: Fractions of calculated over true emissions depending on hour of day, altitude of wind fields and wind history. To account for wind history, wind fields are averaged over a select number of past hours.

 \rightarrow Changes of boundary layer height throughout the day and "pooling" at low wind speeds likely lead to methane gradients that create artefacts in the divergence calculations.

 \rightarrow The divergence technique tends to underestimate true methane emissions.

Case Study Permian basin using TROPOMI CH4

• Derived emissions vary with boundary layer wind speeds (Fig. 1) - which should

• As described by Sun, 2022, flux divergence results contain signals caused by changes in the wind fields, which create a bias in calculated emissions and

 \rightarrow Can we explain this finding?

Case Study Permian Basin using WRF-CHem CH₄

Simulations for June 1 to August 30, 2018.

- O&G CH₄ emissions from the Fuel-based Oil and Gas (FOG) Inventory (FOG, Francoeur et al., 2021) (Fig. 2).
- Hourly output from 1pm to 6pm local time.

Figure 2: WRF-Chem CH₄ input emissions for the Permian basin. Emission are constant in time. Acknowledgements: WRF-Chem model data: Meng Li and Brian McDonald; FOG data: Colby Francoeur and Brian McDonald.

<u>WRF-Chem sensitivity studies show:</u>

- ^{1.0} × 10² Dependency of calculated emissions on wind speed for Delaware (Fig. 3) and Midland (not shown) sub-basins.
 - Results are comparable to TROPOMI data findings (Figs. 1 and 3).

Figure 3: Results of sensitivity study on deriving methane emissions from WRF-Chem CH4 VCDs over the Permian basin, separated by boundary layer wind speed bins.

- True emission are best reproduced later in the day (Fig. 4).
- Wind history or wind field altitude have a small effect on calculated emissions (Fig. 4).
- Calculated emissions at local TROPOMI overpass time (~1:30 pm) are on average underestimated by 30% - 50%.

Evolution of Boundary Layer

 \rightarrow Can we correct for this?

 \rightarrow Next step: Trying to account for changing boundary layer height.

Methane Emissions in the Denver-Julesburg basin - a feasibility study

Study questions:

- Can we derive CH₄ emissions for the Denver-Julesburg basin using TROPOMI and the divergence technique?
- Can we deconvolute co-located seasonal non-O&G emissions from O&G emissions? And can our newly developed seasonal albedo bias correction help with this?

Study Setup:

- 2018-2022 averages filtered for wind speed < 2m/s.
- Region of Interest, ROI, defined by estimated best quality results (ROI ~ 50% of total Denver-Julesburg O&G production).

<u>Results of calculated CH4 emissions for the Denver-Julesburg basin</u> (weak signals/low data coverage) shows:

- Calculated emissions differ by data set (Bremen WFM-DOAS or operational) and by applied corrections (Fig. 6).
- All but uncorrected operational data show higher summer emissions (Fig. 7), consistent with seasonal CAFO emissions.

Figure 6: Methane Emissions calculated with the divergence technique.

 \rightarrow What is the effect of varying data statistics across the ROI?

 \rightarrow Can we defined a total uncertainty of calculated emissions?

Seasonal Albedo-bias Correction

Application of seasonal methane albedo correction:

- Is based on trained machine learning model with TROPOMI and GOSAT data.
- Provides best correction of seasonal albedo bias compared to other correction methods (Fig. 9).

Month of Year

Figure 9: Pearson value compares (GOSAT XCH₄ / TROPOMI XCH₄) and surface albedo SWIR data. -0.1 < Pearson values < 0.1 are considered "no correlation" and are the ideal goal.

<u>Analysis of albedo corrected methane columns finds:</u>

Figure 10: Agricultural land-use a) is reflected in albedo corrected CH₄ columns for summer c) and winter d). The magnitude of correction, b), has a clear seasonal cycle and is dependent on crop type.

• Albedo corrected methane data shows dependence on underlying land-use structures, where different kinds of agriculture (water intensive crops: corn, sugarbeets, etc. drought resistant crops: winter wheat, dry beans, etc) tend to require different correction values (Fig 10a/c/d).

• Average correction values over each land-use type are distinctly different and show seasonality across the entire year, with larger corrections needed in the summer and smaller corrections needed in the winter (Fig. 10b).