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Background

s Atmospheric abundance of methane growing faster especially in the recent decade.

*» Country-wise sectoral emission estimates are important in coordinating reduction measures, so Is the
contribution from each sectors within a country.

** We used methane observations from global surface observation networks and GOSAT and GOSAT-2

Agriculture

satellites in a high-resolution methane inverse model to infer surface anthropogenic fluxes over major
emitting countries.

*» The objective is to check the consistency of inversions using observations from the two satellites, which is
Important to continue estimating emissions in the coming years with the observations from the new
Instrument.

Data used in the model

*» Prior fluxes
Anthropogenic (- oil & gas)
Oil & gas

e EDGAR v6 (Crippa et al., 2020)
e GAINS (HOglund-Isaksson, 2012)
e GFED v4 (Randerson et al., 2017)

Biomass burning

GOSAT+Surf

Wetlands, termites e Saunois et al. (2020).

Waste

Wetlands

GOSAT+Surf

GOSAT2+Surf
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(e) oil and gas, and (f) wetlands sectors. Left panel of each set shows GOSAT and right GOSAT-2

Ocean e Weber et al. (2019)
Geological e Etiope et al. (2019)
Soil sink e Murguia-Flores et al. (2018)

* Observations
GOSAT NIES L2 v02.95, GOSAT-2 NIES L2 v02.00
GLOBALVIEWDpIus_v4.0 2021-10-14, (Schuldt et al., 2021)
The ICOS network (ICOS RI, 2021).
* Meteorology
From ERA5 (Hersbach et al., 2020) and JRA55 (Kobayashi et al., 2015)

Inverse modeling system

* NTFVAR, coupled Eulerian-Lagrangian transport model (NIES-TM resolution 2.5°x2.5° + FLEXPART model
resolution 0.1°x0.1°) (Maksyutov et al., 2021)
¢ Inversion period: 2009 — 2020

* National Institute for Environmental Studies (NIES) model and FLEXPART as the Lagrangian particle
dispersion model.

*» The model development were reported by Maksyutov et al. (2021) and application to methane inversion
reported in Wang et al., (2019) and Janardanan et al., (2020).

* Model makes flux adjustments for the natural (wetland), and biomass burning, agriculture, waste, oil and gas
and coal sectors of the anthropogenic emissions.

*» Analysis for sectoral emissions are carried out on grid (1°x1°) and country totals.

* The model uncertainty were estimated, based on ensemble of inversions with randomly perturbed prior and
observations (Chevallier et al., 2007).

Results

Difference in flux corrections (GOSAT — GOSAT-2)

Agriculture
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Figure 1. Mean (2019-2020) prior sectoral methane fluxes used in this study —3.0 ~10

(gCH, m=2 yr1) for (a) agriculture, (b) waste, (c) biomass burning, (d) coal, (e) oil and

gas, and (f) wetlands sectors. Figure 3 Mean (2019-2020) difference in sectoral methane flux corrections on a 1x1 °

(gCH, m~2 yr 1) for agriculture, waste, biomass and biofuel burning, coal, oil and gas, and
wetlands sectors

¢ Agriculture

The largest difference between the two sets of inversion globally is for the Agriculture sector. GOSAT-2 estimates lower
emissions over southeastern Asia and South American tropical regions and higher  emissions over south American
temperate, northern tropical Africa, Eastern US and rest of Asia (Figure 3)
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*» \Waste

L)

GOSAT-2 estimates lower emissions over eastern China and India and higher emissions over Europe and  Northeastern

United states

¢ Biomass & biofuel burning

L)

GOSAT and GOSAT-2 estimates similar fluxes for biomass and biofuel burning with slightly lower estimate by GOSAT-2
over eastern China and slightly higher values over Gangetic plain and tropical Africa.

s Coal

GOSAT-2 suggests higher emissions from Coal production over pockets of Russia, Europe and United States and lower
emissions from China, India and Indonesia.

» Oil & gas
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L)

L)

The largest difference between GOSAT and GOSAT-2 for Oil & gas sector is for northern Africa (Algeria, Libya), parts of
Europe and southwest regions of Asia (Saudi Arabia, Iran), largest sources in the United States like the Permian Basin and
regions of Russia. GOSAT-2 suggests higher emissions from these regions, whereas in northern tropical South America
and southeastern regions of Asia (e.g. Indonesia) GOSAT-2 estimated lower emissions than GOSAT.

%+ Wetlands

L)

GOSAT-2 reduced the exceptional upward correction in Janardanan et al 2020, 2024 in South American tropical region to
a reasonably even correction. Similarly, over southeastern Asia and to a lesser degree in African regions around and south
of Congo, GOSAT-2 suggests lower wetland emissions than GOSAT. The Congo basin was reported to be a major source
of the 2020 surge in methane emissions (e.g. Qu et al, 2022, Janardanan et al 2024)

The country-total sectoral emissions and their uncertainties are given in Table 1
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Figure 3 Ratio of GOSAT-2 to GOSAT mean (2019-2020) sectoral posterior emission country totals for agriculture, waste,
biomass and biofuel burning, coal, oil and gas, and wetlands sectors

Figure 2. Mean (2019-2020) sectoral methane flux corrections (gCH, m=2 yr~1) for (a) agriculture, (b) waste, (c) biomass burning, (d) coal,

Sectors Agriculture Waste Biomass and biofuel Coal Oil&Gas Wetland
Country |GOSAT GOSAT2 GOSAT GOSAT-2 |GOSAT GOSAT-2 |GOSAT GOSAT-2 |GOSAT GOSAT-2 |GOSAT GOSAT-2
ARG 2.34+0.25| 2.97+0.31| 0.52+0.01] 0.55+0.01] 0.11+0.00| 0.11+0.00f 0.00+0.00{ 0.00+0.00| 0.44+0.01] 0.47+0.01] 3.58+0.15| 3.86%0.16
AUS 1.89+0.24| 2.04+0.26| 0.31+0.01| 0.31+0.01| 0.88+0.02| 0.88+0.02| 0.79+0.05| 0.79+0.05| 0.27£0.00| 0.26+0.00| 3.84+0.16| 3.40+0.14
BOL 0.72+0.02| 0.75+0.02| 0.08+0.00| 0.08+0.00| 0.44+0.00| 0.44+0.00] 0.00£0.00{ 0.00+0.00| 0.12+0.00| 0.12+0.00| 4.68+0.27| 4.38%0.26
BRA 13.52+0.36| 14.29+0.38| 4.91+0.09| 5.06+0.09| 1.85+0.04| 1.85+0.04| 0.05x0.00| 0.05+0.00| 0.22+0.01| 0.23+0.01| 30.50+1.67|26.19+1.44
CAN 1.06+£0.02| 1.15+0.02| 0.57+0.01| 0.62+0.01| 0.46+0.00| 0.46+0.00f 0.08+0.01| 0.08+0.01| 2.68+0.11| 2.84+0.12| 11.20%£0.70| 13.49+0.84
CHN 23.18+1.54| 16.82+1.12]14.36+0.70| 13.35+0.65| 2.47+0.03| 2.42+0.03| 18.97+0.98| 18.31+0.95| 2.69+0.02| 2.75+0.02| 3.03+0.09| 2.92+0.09
COL 1.89+0.05| 1.80+0.05| 0.82+0.01| 0.80%£0.01| 0.07+0.00| 0.07+0.00f 0.20+0.00| 0.20%£0.00| 0.44+0.02| 0.43+0.02| 6.19+0.35| 4.71+0.27
COG 0.02+0.00/ 0.03+0.00| 0.03+0.00{ 0.03+0.00| 0.08+0.00| 0.08+0.00f 0.00£0.00{ 0.00+0.00| 0.06+0.00| 0.07+0.00] 5.97+0.25| 5.95%0.25
COD 0.30+£0.00f 0.31+0.00| 0.64+0.02| 0.64+0.02| 1.35+0.04| 1.35+0.04| 0.00£0.00| 0.00+0.00| 0.02+0.00| 0.02+0.00| 13.59+0.80| 13.44+0.79
IND 16.37+£1.63| 15.73+1.56| 6.56+0.15| 6.44+0.15| 1.23+0.05| 1.23+0.05] 1.11+0.05| 1.05+0.05| 0.47+0.01| 0.47+0.01] 3.92+0.17| 4.06%0.17
IDN 3.70+£0.34| 3.20+0.30| 2.04+0.11| 1.89+0.10] 2.17+0.01| 2.17+0.01] 4.83+0.30| 4.53+0.28| 0.79+0.06| 0.60+0.04| 12.12+0.77| 7.72+0.49
IRQ 0.13+0.02| 0.14+0.03| 0.44+0.01| 0.46+0.01| 0.00£0.00| 0.00+£0.00f 0.00£0.00| 0.00+0.00| 6.38+0.96| 6.91+1.04| 0.09+0.00| 0.10%0.00
MEX 2.67+0.05| 2.65+0.05| 2.48+0.03| 2.43+0.03| 0.21+0.00| 0.21+0.00f 0.01+0.01] 0.01+0.01| 0.29+0.02| 0.30+0.02] 1.35+0.05| 1.29+0.05
NGA 1.85+0.04| 2.25+0.05| 1.47+£0.02| 1.57+0.02| 0.85+0.01| 0.90+0.01| 0.00+£0.00| 0.00£0.00| 2.08+0.37| 2.86+0.51| 1.77+0.11| 2.09+0.13
PAK 5.34+0.37| 5.87+0.41| 1.30+0.03| 1.33+0.04| 0.32+0.01| 0.33+0.01] 0.03+0.00{ 0.03+0.00| 0.53+0.03| 0.56+0.04| 0.16+0.01| 0.16%0.01
PER 0.53+0.00f 0.52+0.00| 0.27+0.00| 0.27+0.00| 0.04£0.00| 0.04+0.00| 0.00£0.00| 0.00+0.00| 0.03+0.00] 0.03+0.00| 7.80+0.53| 6.18+0.42
RUS 1.59+0.02| 1.67+0.02| 3.36%£0.03| 3.53+0.04| 2.93+0.35| 2.93+0.35] 3.15+0.13| 3.24+0.13|15.78+0.41| 16.36+0.43| 14.54+1.19| 15.50+1.27
SDN 2.58+0.03] 2.98+0.04| 0.44+0.01| 0.45+0.01| 0.34+0.00| 0.34+0.00| 0.00+-0.00{ 0.00+-0.00| 0.59+0.02| 0.61+0.02] 3.13+0.23| 3.40%0.25
THA 2.50+£0.49| 2.01+0.39| 0.95+0.03| 0.87+0.03| 0.13£0.03| 0.13+0.03] 0.01+0.00| 0.01+0.00| 0.12+0.01] 0.08+0.01] 1.10+0.08| 0.89%+0.06
USA 9.63+0.29| 10.79+0.32| 4.29+0.05| 4.62+0.06| 0.68+0.08| 0.68+0.08| 1.44+0.28| 1.60+0.31]|20.57+0.28| 21.09+0.29| 5.58+0.28| 6.20+0.32
VEN 1.17+£0.02| 1.12+0.02| 0.36£0.00| 0.36x0.00| 0.15+0.01| 0.15+0.01| 0.01+£0.00| 0.01+0.00| 0.47+£0.01| 0.45+0.01| 4.52+0.35| 3.44+0.26

Table 1. Country total sectoral emissions estimated by the inverse model using GOSAT and GOSAT-2 observations

Summary

*We Iinverted methane observations from GOSAT and GOSAT-2 satellites together
with data from surface networks to compare the posterior sectoral fluxes for the years
2019-2020

*»The strongest contrast between the two inversions was for Agriculture, Waste and
Wetland emissions followed by oil & gas and Coal sectors.
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