

XCO, observation above power plants from Japanese hyperspectral sensor, HISUI

Takahiro Kawashima^{1*}, Akira Iwasaki¹, Toshiyoshi Kimura² and Tadahito Mizutani²

1, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan

2, Japan Aerospace Exploration Agency, 2 -1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan

ABSTRACT

The aim of this work is to study the possibility of CO₂ column-averaged mole fractions (XCO₂) derivation from hyperspectral data acquired by Hyperspectral Imager SUIte (HISUI) which has been borne on the International Space Station (ISS) since 2019. To derive XCO₂ from medium spectral resolution (12.5 [nm]) like HISUI, we newly developed XCO₂ retrieval algorithms based on MODTRAN which can retrieve ILS width, H₂O column amounts, and XCO₂ simultaneously. The algorithm was adopted to HISUI hyperspectral data acquired in that area which involved a coal-fired plant as a local emission source located on the east coast of Japan. HISUI observed the area by 2 times in 2021, and prominent enhancement of XCO₂ of 468.8 [ppm] on April 9 and 485.6 [ppm] on August 10 were found exactly above the stack. The plume shape was found to be agreed with the wind direction at the time of the day thanks to its high spatial resolution of ~ 20 [m]. Assuming a Gaussian plume profile for the XCO₂ distribution, the CO₂ emission rate was estimated. The results were 86.5 [kg/s] and 177.2 [kg/s] for the case of April 9 and August 10 respectively exactly above the stack. Thus, the present research has paved the way for direct estimation from space of CO₂ emissions rate at power plants.

RETRIEVAL of XCO₂ at POWER PLANT

Stack	Retrieved results	Apr. 9, 2021	Aug. 10, 2021
	H ₂ O area mean	0.907 [g/m ²]	5.06 [g/m ²]
	ILS FWHM	12.0 [nm]	15.0 [nm]
	XCO ₂ area mean	423.1 [ppm]	410.6 [ppm]
	XCO ₂ @stack	468.8+/-31.9	485.6+/-37.4
larget: Power plant on		[ppm]	[ppm]

METHOD

the east coast of JAPAN (XCO₂ monthly 424.3 [ppm] (36.436°N, 140.614°E) average by JMA) @Ryori (39.03°N, 141.82°E)

Apr. 9, 2021

CO2 column averaged density on Apr.9,2021,01:27UTC XCO2 =468.766+/-31.9388ppm at Stack 36.4398N,140.615E

Aug. 10, 2021

410.3 [ppm]

CO2 column averaged density on Aug.10,2021,00:49UTC XCO2 =485.607+/-37.4085ppm at Stack 36.4399N,140.614E

hysical quantity	Sym-bol	Unit	Apr. 9, 2021	Aug. 10, 2021
nhancement	ΔXCO ₂	ppm	A: 36.9 B· 41 7	A: 80.0 B: 56.4
Plume cross- ectional spread	σγ	m	A: 25.2 B: 33.1	A: 11.4 B: 30.6
Vind velocity at Mito-city)	u	m s⁻¹	2.3	4.8
mission rate	F _H	kg s⁻¹	A: 86.5 B: 128.5	A: 177.2 B: 335.3

Emission rate	F _b	kg s ⁻¹	188.9*
(bottom up)			

- 2. Bovensmann, H., M. Buchwitz, J. P. Burrows, M. Reuter, T. Krings, K. Gerilowski, O. Schneising, J. Heymann, A. Tretner, and J. Erzinger, A remote sensing technique for global monitoring of power plant CO2 emissions from space and related

IWGGMS-20 (20th International Workshop on Greenhouse Gas Measurements from Space), May 29-31, 2024, HAO/NCAR