

Observations of Solar-Induced Fluorescence from the Orbiting Carbon Observatory 2&3 Missions

t p kurosu¹, k cawse-nicholson¹, a chatterjee¹, c frankenberg², n c parazoo¹, v h payne¹, z a pierrat¹

¹Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA (USA) ²California Institute of Technology, Pasadena, CA (USA) <u>thomas.kurosu@jpl.nasa.qov</u>

IWGGMS-20 28-31 May 2024 Boulder, CO, USA

OVERVIEW

available on the NASA GES-DISCs.

measurements of CO₂ and far-red Solar-Induced Fluorescence (SIF) since 09/2014 (OCO-2) subdivided into 8 footprints, with ground pixels sizes between 3.5 km². OCO-2 retrievals are performed in two narrow wavelength regions around the O₂ A band, centered at and 09/2019 (OCO-3). OCO-2 operates from a dedicated space craft in a sun-synchronous measurements consist of three distinct observation and are also orbit with a fixed 1330h equator crossing time and observes at all latitudes. OCO-3 is installed and a target mode over select locations within on the International Space Station (ISS). This limits measurements to within a latitude band of addition to these three modes, OCO-3 also includes a Snapshot Area Mapping (SAM) mode, a ±12 hours for each location. The publicly distributed SIF data product consists of daily files of about 52°S-52°N due to the ISS orbit inclination but allows observations, including the fully adjusted and background-corrected SIF different local times between sunrise and sunset. All OCO-2&3 data products are publicly continuously. SAM observations are mainly performed over cities to monitor urban CO₂ values as well as the raw retrievals. emissions, but the list of locations includes several sites dedicated to SIF validation.

The Orbiting Carbon Observatory (OCO) 2 and 3 instruments have been making continuous The two OCO instruments have been making continuous. SIF

OCO-2&3 SIF RETRIEVAL SPECTRAL WINDOWS

OCO SIF RETRIEVAL FLOWCHART

OCO SIF retrievals are performed in two narrow spectral bands around the $O_2 A$ band centered at 758.5 and 769.9 nm ("757" and "771", for historic reasons) and exploit the change of depth in solar Fraunhofer lines due to the fluorescence emitted from plants. The graphs show O_2 A band spectra from OCO-2 (blue) and OCO-3 (yellow) plus the TSIS solar spectrum (white [1] not used in the retrievals) from two footprints taken over the same location about 25 seconds apart. The OCO-2 and OCO-3 spectra indicate excellent cross-sensor radiometric calibration.

OCO-2 AND OCO-3 SPATIAL SAMPLING PATTERNS

OCO-2 operates from a dedicated space craft in a sun-synchronous orbit with a fixed 1330h equator crossing time and observes at all latitudes. OCO-3 is installed on the International Space Station (ISS). This limits measurements to within a latitude band of about 52°S-52°N due to the ISS orbit inclination but allows observations to be made at different local times between sunrise and sunset. The latitudinal coverage of OCO-3 within this band depends on local overpass time and thus changes with time of year. ISS ground tracks describe a type of sine wave pattern on the Earth's surface. The top image shows a threeday composite of OCO-2 and OCO-3 SIF@740nm data for 24-26 June 2023, the middle and lower plots show the June 2023 monthly average from OCO-2 and OCO-3.

OCO-3 SIF B10 vs B11 – SNAPSHOT AREA MAP EXAMPLE

An example of SIF@740nm from a Snapshot Area Map taken over Yinchuan, China on 2020-08-13, B10 in the left column, B11 on the right. The bottom row shows the same data with a higher-contrast color scale for better visual comparison (ask the presenter for a loupe). In this particular SAM, there are 6.5% more "good" retrievals in B11 (2369) compared to B10 (2224).

OCO-3 SIF at 740 nm 2020-08-13T02:41:02.202Z fossil Yinchuan China Solar Day 07234, v11.0.64

OCO-2 B11 AND OCO-3 B10&11 TIME SERIES; OCO-3 B10&11 HISTOGRAM

With the reprocessing of the OCO-3 data record for Build 11 currently under way, an offline version of the official LtSIF PGE was applied to the available B11 data and that output subjected to global spatial resampling (see the MEASURES MULTI-SENSOR SIF DATA RECORD box). The time series on the left show light-corrected SIF@740 nm from OCO-2 B11, OCO-3 B10, and the partial OCO-3 B11 over three geographic regions: Amazon (53-75W, 8°S-2°N), a portion of the central US Corn Belt (90-96°W, 40-44°N), and New Zealand (166-179°E, 34-48°S, land surfaces only). Each data point represents a 15-day running average for all data within the geographic region, and no adjustment of SIF values between records has been performed. OCO-2 and OCO-3 are generally consistent, and OCO-3 B11 closely follows B10, with B11 values being slightly smaller than B10. The histograms of SIF@740nm on the left are compiled from the common set of 2022 OCO-3 B10 (top) and B11 (middle) data, and their differences (bottom), about 32 million quality-screened observations.

MEASURES MULTI-SENSOR SIF DATA RECORD

In the framework of the NASA/JPL MEaSUREs "Multidecadal Time Series of Vegetation Chlorophyll Fluorescence and Derived Gross Primary Production" project [2], SIF records from a range of UV/Vis instruments have been collected and spatially resampled onto a common global grid of $1^{\circ} \times 1^{\circ}$ for daily global averages.

The sensors currently included are ERS-2/GOME [3], Envisat/SCIAMACHY [4],

OCO-3 – ECOSTRESS DATA COLOCATION

Photosynthetic activity, and hence SIF as its byproduct, is intricately linked to the amount of heat- and water-stress the plants experience. The ECOSTRESS instrument on the ISS observes surface temperature (LST) and emissivity, from which it derives evapotranspiration (ET) as well as higher-level data products like evaporative stress index (ESI) and water use efficiency (WUE). SIF and ET/ESI/WUE provide synergistic information on plant photosynthetic activity and its relation to GPP.

From the ISS, OCO-3 and ECOSTRESS frequently observe the same geographic area at the same time. An effort is under way to provide a co-located data product "ECOCO3" (working title) of OCO-3 SAMs taken over sites of ground-based SIF towers and ECOSTRESS validation sites. ECOCO3 will contain selected SIF, ET, and LST data fields from their L2 product files in both native and spatially averaged form. The initial record will comprise the period of 08/2019-11/2023. After operations of OCO-3 restart (expected for 07/2024), ECOCO3 production will be automated and follow the release cycle of OCO-3 LtSIF.

The ECOCO3 product is expected to be publicly released on the NASA DISCs in the time frame of 09/2024.

MetOp-A&B GOME-2 [5,6], OCO-2&3 [7] (including available OCO-3 B11 data), and two versions of SIF from S5P/TROPOMI [8,9], collectively spanning a 29-year data record. The spatial averaging is based on a tessellation approach that calculates fractional overlap of instrument ground footprints with the destination grid cells that readily accommodates finer resolution grids without loss of spatial information.

The images show concatenated time series light-corrected SIF@740 nm from all sensors over three regions of the globe: Alaska/Yukon (166-115°W, 64-72°N; no OCO-3!), a portion of the US Ozarks (90-95°W, 35-38°N), and South-East Africa (22-32°E, 15-23°S). Each data point represents a 15-day running average for all data within the geographic region. No adjustment of SIF values between sensors has been performed. Cross-sensor agreement varies between regions, which indicates that harmonization efforts are required to create a consistent long-term data record of Solar-Induced Fluorescence.

References

[1] Coddington et al. (2021), The TSIS-1 Hybrid Solar Reference Spectrum, GRL 48(12), doi:10.1029/2020GL091709

[2] JPL MEaSUREs SIF, https://climatesciences.jpl.nasa.gov/sif/

[3] Joiner, J. et al. (2019), L2 Daily Solar-Induced Fluorescence (SIF) from ERS-2 GOME, 1995-2003. ORNL DAAC, Oak Ridge, Tennessee, USA, doi.org/10.3334/ORNLDAAC/1758 [4] Joiner, J. et al. (2021), L2 Solar-Induced Fluorescence (SIF) from SCIAMACHY, 2003-2012. ORNL DAAC, Oak Ridge, Tennessee, USA, doi.org/10.3334/ORNLDAAC/1871 [5] Joiner, J. et al. (2023), L2 Daily Solar-Induced Fluorescence (SIF) from MetOp-A GOME-2, 2007-2018, V2. ORNL DAAC, Oak Ridge, Tennessee, USA, doi.org/10.3334/ORNLDAAC/2292 [6] Joiner, J. et al. (2023), L2 Daily Solar-Induced Fluorescence (SIF) from MetOp-B GOME-2, 2013-2021. ORNL DAAC, Oak Ridge, Tennessee, USA, doi.org/10.3334/ORNLDAAC/2182 [7] Doughty, R. et al. (2022), Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets, Earth Syst. Sci. Data, 14, 1513–1529, doi.org/10.5194/essd-14-1513-2022 [8] Köhler P. & Frankenberg, C. (2020), Ungridded TROPOMI SIF (at 740nm) (1.0) [Data set]. CaltechDATA. doi.org/10.22002/D1.1347

ERS-2/GOME

000/000-2

S5P/TROPOSIF

ISS/0C0-3 811

ISS/0CO-3 B10

MetOp-A/GOME-3

MetOp-B/GOME-2

[9] Guanter, L. et al. (2021), The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission, Earth Syst. Sci. Data, 13(11), doi.org/10.5194/essd-13-5423-2021

this space intentionally left blank

© Copyright 2024 California Institute of Technology, **Government Sponsorship Acknowledged**