
𝑗 = 277 kg/h

Ƹ𝑗 = 288 ± 30 kg/h

• We use 7000 images of column-integrated CH4 LES plumes and 3000 realistic background noise scenes to generate synthetic data with a 
resolution of 5 m x 5 m. 

• The plumes are rotated, shifted and scaled to emulate random wind directions and flux rates and a rotated realistic background noise from
AVIRIS-NG flights is added.

• As a last step, a masking threshold of 500 ppm m is applied to remove information unavailable in real measurements and to make the
generalization to real world data more stable.

• The data is split into training, validation and test data and fed into a ResNet−50[3] with slight modifications for the regression task.

• The optimization criterion is the Gaussian negative log likelihood loss:
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• The model shows very few signs of bias over the whole flux domain, with the exception of plumes in the 
range from 0 kg/h to 100 kg/h.

• We use the mean percentage error (MPE), the mean absolute percentage error (MAPE) and the Pearson 
correlation coefficient (R) as summary statistics for the model performance.

• The predictions of the model seem to stabilize around 40 kg/h and, due to the low biases, the performance
remains stable for arbitrary flux distributions.

• The differences between the true and the predicted flux rates with respect to their respective error estimates
follow a normal distribution over the whole test dataset.

• We follow the approach of S. Jongaramrungruang, using information contained in the plume shape[1] to estimate the flux rate without 

external wind speed information, utilizing deep learning.[2]

• We implemented improvements to the overall methodology to address known issues from previous works and suggest an analysis pipeline
that allows the performance of deep learning models to be verified, to make them more robust.

• In addition, we are the first to obtain meaningful error estimates from a deep learning model for the regression task of flux rate estimation.

• The improvements we introduced should be applicable to other studies and lead to an increased performance as well as the ability to obtain
uncertainty estimates.

• Looking at individual wind speed ensembles reveals a 
systematic bias for 9 m/s and 10 m/s.

• In addition, a wind-speed-dependent instability is observable 
for low flux rates.

• The bias shows an impact on the error estimates for
geostrophic wind speeds of 9 m/s or 10 m/s.
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