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 We use 7000 images of column-integrated CH, LES plumes and 3000 realistic background noise scenes to generate synthetic data with a I
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 The plumes are rotated, shifted and scaled to emulate random wind directions and flux rates and a rotated realistic background noise from 3 cone ©15
AVIRIS-NG flights is added. 1x1 conv, 2048
* As alast step, a masking threshold of 500 ppm m is applied to remove information unavailable in real measurements and to make the | Ldconvsi2
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generalization to real world data more stable. 1x1 conv, 2048
« The data is split into training, validation and test data and fed into a ResNet-50!3! with slight modifications for the regression task.
* The optimization criterion is the Gaussian negative log likelihood loss:
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Figure taken from [2]
 The model shows very few signs of bias over the whole flux domain, with the exception of plumes in the 3199 T 14.65% 1108% | 1.48%
range from 0 kg/h to 100 kg/h. 1750 -
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 We use the mean percentage error (MPE), the mean absolute percentage error (MAPE) and the Pearson
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correlation coefficient (R) as summary statistics for the model performance. “
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* The predictions of the model seem to stabilize around 40 kg/h and, due to the low biases, the performance 750 -
remains stable for arbitrary flux distributions. 500 -
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Examples of scenes with poor model performance

Supported by:

% Federal Ministry
for Economic Affairs

References

[1] S.Jongaramrungruang et al. “Towards accurate methane point-source quantification from high-resolution 2-D plume imagery”. In: Atmospheric This work used resources of the Deutsches Klimarechenzentrum

Acknowledgements

DKRZ

Measurement Techniques 12.12 (2019), pp. 6667-6681. doi: 10.5194/amt-12-6667-2019. and Climate Action

[2] S.Jongaramrungruang et al. “MethaNet — An Al-driven approach to quantifying methane point-source emission from high-resolution 2-D plume

(DKRZ) granted by its Scientific Steering Committee (WLA) under

imagery”. In: Remote Sensing of Environment 269 (2022), p. 112809. issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.2021.112809. project ID bd1231 and bb1170 DEUTSCHES
[3] He, Kaiming et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015): KLIMARECHENZENTRUM
770-778. on the basis of a decision

by the German Bundestag




