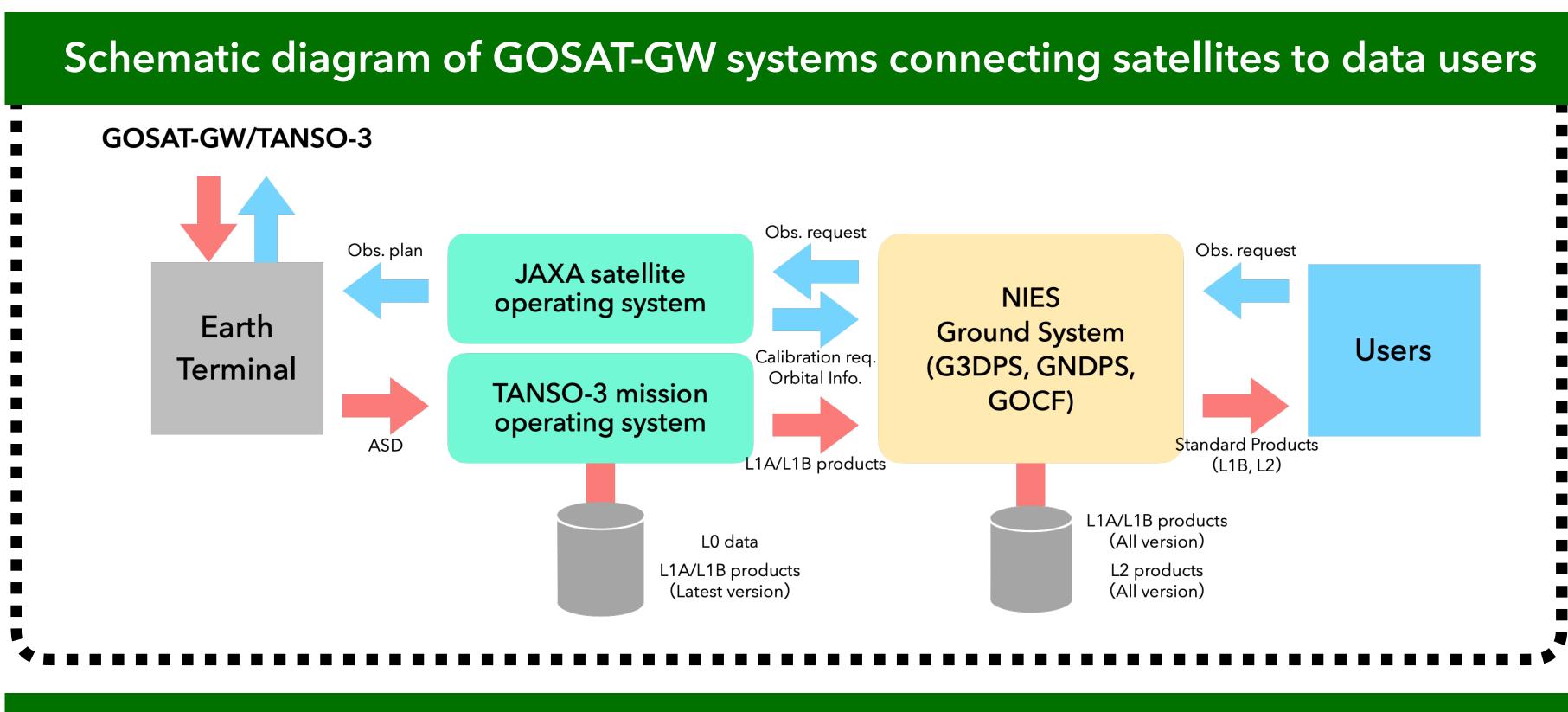
Preparation status of the data processing system for GOSAT-GW/TANSO-3 in NIES

Hisashi Yashiro^{1*}(yashiro.hisashi@nies.go.jp), Takafumi Sugita¹, Tazu Saeki¹, Yu Someya¹, Satoshi Kikuchi¹, Tamaki Fujinawa¹, Fumie Kawazoe¹, Akihide Kamei¹, Yukio Yoshida¹, Takafumi Kajihara², Motonobu Kanagawa³, Nugzar Gognadze³, Hiroshi Tanimoto¹, and Tsuneo Matsunaga¹ 1. National Institute for Environmental Studies (NIES), 2. NEC, 3. EURECOM

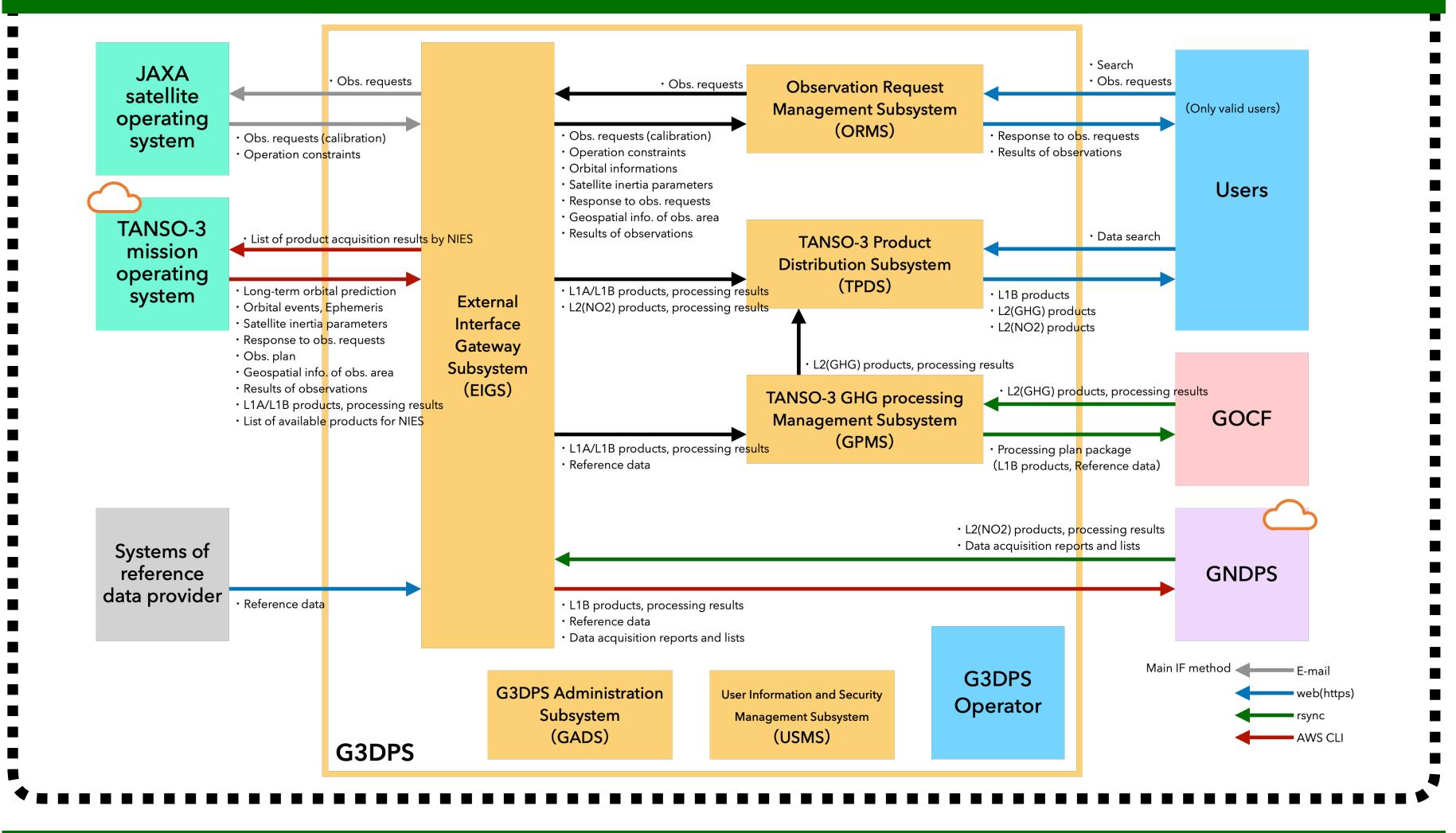
GOSAT-GW specifications

- Launch: Japanese FY2024
- Design lifetime: > 7 years
- Sun-synchronous, Sub-recurrent orbit

• Altitude: 666km, recurrent cycle: 3days, MLTAN: 13:30, ascending


TANSO-3 (Total Anthropogenic and Natural emissions mapping SpectrOmeter-3)

- Haging spectrometer (3-band grating)
- Spectral bands: 0.45 µm / 0.7 µm /1.6 µm
- Spectral resolution: < 0.5nm@0.45μm, < 0.05nm@0.7μm, < 0.2nm@1.6µm
- > Observation mode
- Wide-mode: 911km swath, 10km footprint, no pointing
- Focus-mode: 90km swath, 1-3km footprint, AT/CT pointing
- Focus mode observations are carried out on request.


Products

Standard Products

- **Evel 1B** (geolocated and calibrated spectral radiance)
- Wide-mode 10km res.: one file per cycle*
- Focus-mode 3km res.: one file per scene*
- **Evel 2** (atmospheric products derived from the L1B)
- **Wide-mode 10km res. GHG**: one file per day* (including full-physics XCO₂&XCH₄, proxy XCH₄, and SIF)
- Wide-mode 10km res. NO₂: one file per day*
- Focus-mode 3km res. GHG: one file per scene*
- Focus-mode 3km res. NO₂: one file per scene*
- Quick delivery products are planned for focus-mode 3km res. GHG&NO₂
- * One cycle means the orbital period between the descending point and the next descending point. The scene corresponds to each pointing request. Daily data contains 14-15 cycles.
- Daytime data only
- File format: HDF5 (readable by NetCDF4 library)
- Evel 2 products for a month are planned to be processed within the next month
- All the products will be distributed from "GOSAT-GW TANSO-3 Product Archive (G3PA)" site

G3DPS: System for product management and user contact

Development schedule

	CY2021				CY2022				CY2023 C ^v				CY2024	CY2024				CY2025			
	JFY202()	JFY2021				JFY2022			JFY2023				JFY2024					JFY2025		
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q
Milestone																La	unch Targ	get			
G3DPS Software					Detail design			Impleme	entation	Tests					Total tes	ts			Operation		
G3DPS Hardware									Procure- Install nent					Development usage			Operatio	n			
GOCF					Market research									Procurer	nent	Install			Operatio	n	
GNDPS Software			Detail design			Implementation				Tests							Operation				
GNDPS Cloud				Development usage												Operation					

Challenges in the NIES GOSAT-GW project

- of wide-mode while the focus mode is on.
- more than x300 compared to GOSAT/GOSAT-2.

Development of the data-driven models in GOSAT-GW project

Approach1: Building a surrogate model

Approach 2: Inverse estimation of GHG concentrations without using physical models

- GOSAT spectrum/retrieval data
- Evaluation of two different machine-learning methods
- Neural network (6-layer MLP)
- LASSO regression concentration estimation
- Challenges
 - training data

Summary

- learning.

National Institute for Environmental Studies, Japan

• Focus-mode observation execution plan: focus-mode is mainly used for observation of megacities, comparison with ground-based observations, and glint observation over the ocean. We are not able to obtain the observations

• Large computational workload: the number of points for full-physics retrieval is expected to increase, and the computational workload will increase by

R&D of retrieval emulation model by data-driven methods

• Create an emulator that simulates our radiative transfer model

• Numerous simulations using physical models are used as training data

• Emulates the MAP estimation of TANSO-3 full-physics retrieval (based on e.g. Yoshida et al. 2011; 2013, Someya et al., 2022)

• Creating TANSO-3-like data for training/validation from over ten years of

: The method has a simpler architecture than DNN and is able to detect specific wavelength points and reference data that strongly contribute to

• Preliminary results of both methods show promising results, reporting small RMSE as fairly comparable to the full-physics retrieval

• Memory management and calculation time reduction when using more

• \succ Analysis of weak sensitivity to the trend/inter-annual variation of CH₄

• Development of NIES ground systems for GOSAT-GW TANSO-3 is proceeding with the aim of smooth product release under the launch schedule

 $\cdot \geq$ Dealing with the explosive increase in computational workload due to the increase in observation points from TANSO-3 for calculating XCO₂ and XCH₄ is one of the challenges. We plan to use "retrieval emulators" based on machine