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AbStraCt Motivation Fig_ures 1-5: To_ guantify the mass ano_l energy rovx_/ we require tracing state _
- The solar wind is a continuous flow of plasma that fills the heliosphere. However, the variables (density, temperature, velocity), magnetic field, and non-thermal Rivera &
A unified theory of the energy and mass flow across the connection between its formation, development, and local, ongoing plasma dynamics as it diagnostics between the corona and heliosphere are shown in the Figures | B5dman 2025
Sun-Heliospheric system requires detailed observations of streams from the Sun is known partially or in segments. A full theory of the solar wind requires below.
plasma state and the magnetic field to constrain models of extended coronal remote observations that track its birth in the corona and as it escapes Iinto | | o E E
the corona and solar wind. This presentation will briefl the inner heliopshere. We note that Integrating these_ measurements are I|r_n|ted to wh_en the . |
: ' _ P _ y remote observations are taken in quadrature with Iin situ observations of
summarize the necessary diagnostics to probe the A key to bridging coronal and heliospheric physics lies in our ability to continue tracing the the inner heliosphere as well as restricted to overlapping operation.
transfer of energy across the corona and Inner newly formed solar wind stream beyond the solar atmosphere to address important solar wind Caveats and detalls of the different missions can be found in Rivera and
heliosphere. In particular, highlighting the critical role of quest:]ons thathpertaindtO: | . . ] | Badman (2025) E
: : : : « What are the conditions of solar wind solar sources that drive its distinct evolution?
PUNC.H observations I ca_ptur!ng the EXter.]ded solar wind . Are the physical heating mechanisms in the solar wind distinct from those that Generally, there can be excellent coverage of density and velocity
evolution to couple with In situ observations of Parker oroduce coronal heating? diagnostics between the low corona and the inner heliosphere when
Solar Probe and Solar Orbiter. . What is the role that Alfven waves/turbulence play in producing the non-adiabatic ion observations can be coupled. However, temperature, magnetic field and
and electron temperature profile observed between the corona and heliosphere? non-thermal diagnostics are much more limited to the low corona, below
2R, leaving a large observational gap between their in situ counterparts.

Fig.1l: Density diagnostics Fig 2: Density diagnhostics

Fig 3: Temperature diagnostics Fig 4: Velocity diagnostics Fig 5: Magnetic field and non-thermal diagnostics
(extended corona) (inner heliosphere)
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