
2. Data & Methodology

Real-Time Solar Wind (RTSW) data 

• Made available by the Space Weather
Prediction Center (NOAA SWPC)

• Archived dataset 
• Measurements from various 

spacecraft located at the L1 Lagrange 
point

• Tracked by the Real-Time Solar Wind 
Network of ground stations.

• Available from 1998 onward.
• NOAA/DSCOVR satellite serving as the 

primary operational RTSW spacecraft 
since July 2016.

ICME Catalog

• Aggregated catalog based on several 
other catalogs (Möstl, Richardson and 
Cane, Nguyen, ...)

• 784 events between 1998 and 2023

We resample the data to a 30 minute 
frequency to reduce data gaps and 
eliminate the uncertainties on event 
boundaries introduced through the
slightly different positions around L1
between spacecraft. We directly train 
our model on the RTSW dataset to help 
it learn how to account for the reduced 
data quality compared to OMNI data.

ARCANE (Automatic Realtime deteCtion ANd forEcast) serves as a highly modular and adaptable machine 
learning framework, created to address the complexities of time series event detection tasks. Its primary goal 
is to streamline workflows by offering integrated modules and tools for data preprocessing, model training, 
testing, evaluation and visualization.

The framework is built on Hydra (Yadan, 2019), which provides a flexible and modular setup, making it easy 
to configure and manage experiments. The configurable components are organized into eight main 
categories: Datasets, Boundaries, Callbacks, Collates, Models, Modules, Samplers, and Schedulers. Each 
module can be adjusted directly through configuration files, allowing for a quick modification of setups 
without altering the core code. These modules integrate with available scripts, which handle key tasks such as 
training, testing, analysis and prediction. The framework also includes routines specifically designed to 
download and process the RTSW data. While the current version of ARCANE comprises a ResUNet++ model as 
introduced in Rüdisser et al. 2022, the modularity of the framework allows for easy integration of newer 
models, as the field advances.

Automatic detection methods generally process time series data and generate event lists, which can then be 
compared to ground truth catalogues. Instead of evaluating the entire event after it has passed, we identify the 
earliest point at which an event is detected in a streaming context and compare it to the true event start.

Comparison between two different early detection classifiers:
1. Threshold Classifier:                                  2. ARCANE Classifier: 
• Bmax ≥ 8 nT
• β ≤ 0.3
• Tp ≤ 4.3 × 104 K
• Following Lepping et al. 2005
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Interplanetary coronal mass ejections (ICMEs) are among the primary drivers of space weather disturbances 
Earth, affecting both technological systems and human activities. Automatically detecting these events in solar 
wind in situ data is critical for early warning systems. Various approaches have been employed to identify these 
structures in time series data from in situ solar wind observations (e.g., Nguyen et al. 2019; Rüdisser et al. 2022; 
Pal et al. 2024). However, significant challenges remain in developing robust detection methods, especially in real-
time applications.

• Development of a modular framework to evaluate methods for early detection 
of ICMEs in realtime solar wind in situ data. 

• Assessing models under realistic operational conditions. Operational deployment of a
first prototype at https://helioforecast.space.

• Reliable detection of high impact events in a realtime setting and acceptable 
performance on low impact events. 

Fig.2 Duration of Data Gaps for both the RTSW and OMNI Dataset.

Fig.4: Precison vs. Recall for different waiting
    times.

The Delay parameter aids in determining 
the model's ability to detect events early. 
We show the histogram of Delay 
Percentage in Figure 5. 

To analyze which events our model 
performs worst on, we additionally show 
the Delay vs the duration of each event 
in Figure 6. 

Finally, we plot the maximum value of 
the total magnetic field vs. the maximum 
value of the bulk velocity for true 
positives (TP), false positives (FP) and 
false negatives (FN) to estimate the 
severity of the events in each group.

 

Key Features & Advancements
• First operational ICME detection on streaming realtime solar wind data using machine learning.
• Outperforms traditional threshold-based detection in both precision and timeliness, even on challenging 

datasets like RTSW.
• Modular design: Could easily integrate additional data sources (e.g., STEREO-A) or links with arrival time models 

to enhance detection.
• Computational efficiency: Low-cost retraining enables rapid adaptation to improved event catalogs and 

inference can be run on CPUs in short time.

Challenges

• Current event catalogs lack severity labels, limiting differentiation between high- and low-impact ICMEs.
• Ideal training data would include full solar wind segmentation, distinguishing shocks, sheaths, flux ropes, HSSs 

and SIRs.

Future Directions

• Improved catalogs or simultaneous prediction of key ICME parameters (e.g., min Bz, duration, velocity) to
infer severity.

• Integrating physical models for real-time analysis 
of detected ICMEs.

• Ensemble modelling approach to improve detection 
reliability, robustness, and explainability.

• Include arrival time models to further improve 
performance.

• Integrate data from multiple sources.
• Apply the tool throughout the Heliosphere.

Fig.6: Delay vs duration for each event.

Fig.5 Delay in percentage of the duration shown as histogram. 

Fig.1: Solar wind magnetic field data from the NOAA/DSCOVR spacecraft at L1 in GSM coordinates. ICMEs are indicated by the 
shaded regions.

• Adapted from Rüdisser et al. (2022), where a ResUNet++ was 
used for time series segmentation

• Modified post processing routines 
• Trained and evaluated on RTSW data

Fig.3 Percentage of missing Data in Events for both the RTSW and OMNI Dataset.

We evaluate the model’s performance by analyzing Precision and 
Recall at different waiting times 𝛿. 𝛿 is defined as the time that 
passes before we classify a certain timestep as either event or non 
event. At a waiting time of 11 hours, we determine Precision, Recall 
and F1-Score and compare it to the performance of the Threshold 
Classifier, which are shown in Table 1. 

Additionally, we define the Delay as the waiting time plus the error 
the model made on the starting time and show the resulting metrics 
in Table 2.

Precision Recall F1-Score
ARCANE Classifier 0.52 0.77 0.63
Threshold Classifier 0.50 0.59 0.54
Tab.1: Results at a waiting time of 11 hours.

Abs. Mean Delay Rel. Mean Delay
ARCANE Classifier 4.0 hours 12.8 %
Threshold Classifier 7.3 hours 17.9 %

Tab.2: Results for the Delay analysis.

Fig.7.: Maximum value of B vs maximum value of V for each group of 
events.
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